Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Sens ; 8(5): 2087-2095, 2023 05 26.
Article in English | MEDLINE | ID: mdl-37097260

ABSTRACT

A critical analysis of the known theories of functioning of H+-selective electrodes (H+-SEs) based on neutral amine-type carriers is given. A model of specific ion association is proposed, according to which, in membranes plasticized with 2-nitrophenyloctyl ether, the protonated ionophore and cation-exchanger form much stronger ion pairs with inorganic ions extracted from the sample solution than with each other, and simple equations that describe the lower and upper limit detection (pHUDL and pHLDL) are obtained. A feasible and reliable method for quantifying the pKa values of ionophores in the membrane phase from potentiometric data is substantiated. The efficiency of using single-ion partition coefficients and ion pair formation constants for a priori quantitative description of the H+-SE response in solutions of various compositions has been demonstrated for the first time. It is shown that the width of the dynamic response range of such electrodes depends on the nature of the tertiary amino group, and the reasons for the observed effect are discussed.


Subject(s)
Amines , Ionophores , Limit of Detection , Electrodes , Cations
2.
Anal Chim Acta ; 1239: 340556, 2023 Jan 25.
Article in English | MEDLINE | ID: mdl-36628696

ABSTRACT

A feasible, fast and reliable method for estimating ion association constants in PVC plasticized membranes of ion-selective electrodes from potentiometric data has been theoretically and experimentally substantiated. The method is based on the established fact of complete dissociation of salts of quaternary ammonium cations R4N + An‒ (except for those containing methyl substituents at the nitrogen atom) in a membrane plasticized with o-nitrophenyl octyl ether (o-NPOE). Therefore, the boundary potential at the interface of the membrane with an aqueous solution of R4N+ depends only upon the concentrations of the corresponding solution and the ion exchanger in the membrane and is independent of the presence of a lipophilic ionic additive (LIA), which makes it possible to use such ions as reference ones in the internal filling solution. If the ions studied (i+) are capable of forming ion associates with the ion exchanger, then the introduction of LIA into the membrane will lead to a decrease in the concentration of free i+ ions and to a corresponding increase in the boundary potential, from which the ion association constant can be directly calculated. The results obtained agree with the known literature data and the results of quantum chemical calculations. The prospective of applying the proposed method to the study of other membrane compositions is discussed.


Subject(s)
Ion-Selective Electrodes , Membranes, Artificial , Ions , Potentiometry , Ethyl Ethers
3.
Membranes (Basel) ; 12(10)2022 Oct 20.
Article in English | MEDLINE | ID: mdl-36295778

ABSTRACT

An experimentally simple method for the direct determination of single-ion partition coefficients between water and a PVC membrane plasticized with o-NPOE is suggested. The method uses the traditional assumption of equal single-ion partition coefficients for some reference cation and anion, in this case tetraphenylphosphonium (TPP+) and tetraphenylborate (TPB-). The method is based on an integrated approach, including direct study of some salts' distribution between water and membrane phases, estimation of ion association constants, and measurements of unbiased selectivity coefficients for ions of interest, including the reference ones. The knowledge of distribution coefficients together with ion association constants allows for direct calculation of the multiple of the single-ion partition coefficients for the corresponding cation and anion, while the knowledge of unbiased selectivity coefficients together with ion association constants allows for immediate estimation of the single-ion partition coefficients for any ion under study, if the corresponding value for the reference ion is known. Both potentiometric and extraction studies are inherently equilibrium-based techniques, while traditionally accepted methods such as voltammetry and diffusion are kinetical. The inner coherent scale of single-ion partition coefficients between water and membrane phases was constructed.

SELECTION OF CITATIONS
SEARCH DETAIL
...