Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Heliyon ; 10(6): e27635, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38509999

ABSTRACT

Seaweed has attracted attention as a bioactive source for preventing different chronic diseases, including liver injury and non-alcoholic fatty liver disease, the leading cause of liver-related mortality. Caulerpa lentillifera is characterized as tropical edible seaweed, currently being investigated for health benefits of its extracts and bioactive substances. This study examined the effects of C. lentillifera extract in ethyl acetate fraction (CLEA) on controlling lipid accumulation and lipid metabolism in HepG2 cells induced with oleic acid through the in vitro hepatic steatosis model. Gas chromatography-mass spectrometry (GC-MS) analysis indicated that CLEA contained diverse organic compounds, including hydrocarbons, amino acids, and carboxylic acids. Docked conformation of dl-2-phenyltryptophane and benzoic acid, two major bioactive CLEA components, showed high affinity binding to SIRT1 and AMPK as target molecules of lipid metabolism. CLEA reduced lipid accumulation and intracellular triglyceride levels in HepG2 cells stimulated with oleic acid. The effect of CLEA on regulating expression of lipid metabolism-related molecules was investigated by qPCR and immunoblotting. CLEA promoted expression of the SIRT1 gene in oleic acid-treated HepG2 cells. CLEA also reduced expression levels of SREBF1, FAS, and ACC genes, which might be related to activation of AMPK signaling in lipid-accumulated HepG2 cells. These findings suggest that CLEA contains bioactive compounds potentially reducing triglyceride accumulation in lipid-accumulated HepG2 hepatocytes by controlling lipid metabolism molecules.

2.
Prev Nutr Food Sci ; 27(4): 376-383, 2022 Dec 31.
Article in English | MEDLINE | ID: mdl-36721749

ABSTRACT

Garcinia dulcis is a tropical plant native to Southeast Asia that is traditionally used as a folk remedy to cure several pathological symptoms. Camboginol and morelloflavone have been revealed by previous studies as the principal bioactive compounds from the flower extract of G. dulcis. The disease-preventing properties of camboginol or morelloflavone, including anti-cancer, from various parts of G. dulcis have been revealed by recent studies. Glioblastoma is the aggressive malignant stage of brain cancer and suffers from chemotherapeutic resistance. This study aimed to test the anti-cancer effect of G. dulcis flower extract against the proliferation of A172 human glioblastoma cells. The extract had cytotoxic activity and promoted cell cycle arrest at the S and G2/M phases. Autophagic cell death was promoted by cytotoxic concentrations of the extract, as observed by enhancing autophagic flux and the expression of autophagic markers. Autophagic cell death induced by the extract might be associated with endoplasmic reticulum (ER) stress. Conclusively, it was indicated by this study that the extract from the flower of G. dulcis had a protective effect against the proliferation of A172 human glioblastoma cells through the induction of ER stress-mediated cytotoxic autophagy.

3.
Asian Pac J Cancer Prev ; 21(7): 2029-2033, 2020 Jul 01.
Article in English | MEDLINE | ID: mdl-32711429

ABSTRACT

OBJECTIVES: The study was to investigate anti-migration and invasion effects of astaxanthin (ATX), a natural carotenoid derivative distributed in marine environments, against A172 human glioblastoma cells. MATERIALS AND METHODS: Cell viability after ATX treatment was measured by MTT assays. Tumor cell migration and invasion were observed by scratch and Boyden chamber assays, respectively. Expression of MMP-2 and activity of MMP-9 were observed by immunoblotting and gelatin zymography, respectively. RESULTS: ATX up to 150 µM was not toxic to A172 cells at 48 h post-treatment. In contrast, ATX at 50 and 100 µM significantly decreased migration and invasion of A172 cells at 24 and 48 h post-treatment. Metastatic-reducing effect of ATX is associated with the reduction of MMP-2 and MMP-9 expressions in a dose-dependent manner. CONCLUSION: This finding indicated that ATX has anti-migration and invasion effects against human glioblastoma cells and might be applicable for the protection against metastasis of glioblastoma.


Subject(s)
Brain Neoplasms/pathology , Cell Movement , Gene Expression Regulation, Neoplastic , Glioblastoma/pathology , Apoptosis , Brain Neoplasms/drug therapy , Brain Neoplasms/enzymology , Cell Proliferation , Gene Expression Regulation, Enzymologic , Glioblastoma/drug therapy , Glioblastoma/enzymology , Humans , Matrix Metalloproteinase 2/metabolism , Matrix Metalloproteinase 9/metabolism , Neoplasm Invasiveness , Tumor Cells, Cultured , Xanthophylls/pharmacology
4.
Front Physiol ; 10: 1219, 2019.
Article in English | MEDLINE | ID: mdl-31611809

ABSTRACT

Autophagy is a degradative process of cellular components accomplished through an autophagosomal-lysosomal pathway. It is an evolutionary conserved mechanism present in all eukaryotic cells, and it plays a fundamental role in maintaining tissue homeostasis both in vertebrates and invertebrates. Autophagy accompanies tissue remodeling during organ differentiation. Several autophagy-related genes and proteins show significant upregulations following nutrient shortage (i.e., starvation). In our previous study, we found that in female giant freshwater prawns subjected to a short period of starvation autophagy was up-regulated in consonant with ovarian maturation and oocyte differentiation. Whether and how starvation-induced autophagy impacts on testicular maturation and spermatogenesis of the male prawns remained to be investigated. In this study, we analyzed the effects of starvation on histological and cellular changes in the testis of the giant freshwater prawn Macrobrachium rosenbergii that paralleled the induction of autophagy. Under short starvation condition, the male prawns showed increased gonado-somatic index, increased size, and late stage of maturation of seminiferous tubules, which contained increased number of spermatozoa. Concurrently, the number of autophagy vacuoles and autophagy flux, as monitored by transmission electron microscopy and the autophagic marker LC3, increased in the testicular cells, indicating that a short period of starvation could induce testicular maturation and spermatogenesis in male M. rosenbergii along with modulation of autophagy.

5.
Front Physiol ; 9: 613, 2018.
Article in English | MEDLINE | ID: mdl-29910737

ABSTRACT

Invertebrate neuropeptide F-I (NPF-I), much alike its mammalian homolog neuropeptide Y, influences several physiological processes, including circadian rhythms, cortical excitability, stress response, and food intake behavior. Given the role of autophagy in the metabolic stress response, we investigated the effect of NPF-1 on autophagy during fasting and feeding conditions in the hepatopancreas and muscle tissues of the male giant freshwater prawn Macrobrachium rosenbergii. Starvation up-regulated the expression of the autophagy marker LC3 in both tissues. Yet, based on the relative levels of the autophagosome-associated LC3-II isoform and of its precursor LC3-I, the hepatopancreas was more responsive than the muscle to starvation-induced autophagy. Injection of NPF-I inhibited the autophagosome formation in the hepatopancreas of fasting prawns. Relative to the body weight, the muscle weight was not affected, while that of the hepatopancreas decreased upon starvation and NPF-1 treatment could largely prevent such weight loss. Thus, the hepatopancreas is the reserve organ for the nutrient homeostasis during starvation and NPF-I plays a crucial role in the balancing of energy expenditure and energy intake during starvation by modulating autophagy.

6.
Exp Gerontol ; 110: 158-171, 2018 09.
Article in English | MEDLINE | ID: mdl-29902502

ABSTRACT

Holothuria scabra is a sea cucumber that is mostly found in the Indo-Pacific region including Thailand. Extracts from many sea cucumbers possess pharmacological activities proposed to benefit human health. In this study, we investigated the anti-oxidant and anti-ageing activities of extracts from H. scabra by using Caenorhabditis elegans as a model organism. Parts of H. scabra were solvent-extracted and divided into nine fractions including whole body-hexane (WBHE), whole body-ethyl acetate (WBEA), whole body-butanol (WBBU), body wall-hexane (BWHE), body wall-ethyl acetate (BWEA), body wall-butanol (BWBU), viscera-hexane (VIHE), viscera-ethyl acetate (VIEA), and viscera-butanol (VIBU). All fractions of the extracts were tested for anti-oxidant activities by 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azino-bis-(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) assays and for anti-ageing effects by lifespan assays using C. elegans as a model. The results showed anti-oxidant properties in all fractions with the highest activity shown by the DPPH assay in WBBU (EC50 = 3.12 ±â€¯0.09 mg/ml), and by the ABTS assay in WBHE (EC50 = 0.31 ±â€¯0.10 mg/ml). In lifespan assays the highest anti-ageing effect was detected in WBBU- and BWEA-treated C. elegans with increased mean lifespans of 8.12% and 4.77%, respectively. Furthermore, WBBU and BWEA-treated C. elegans exhibited significantly higher resistance against heat shock and paraquat-induced oxidative stresses than controls. By using LC-MS/MS, both extracts were characterized to contain triterpene glycosides as the main bioactive components. To explore mechanisms of H. scabra extracts on longevity and stress resistance, worms with genetic mutations in anti-ageing pathways were analyzed and showed that WBBU and BWEA did not prolong the lifespan of daf-16, age-1, sir-2.1, jnk-1, sek-1, and osr-1 mutants, suggesting that these genetic pathways are involved in mediating the anti-ageing effects of the H. scabra extracts. Moreover, WBBU and BWEA enhanced the nuclear translocation of the FoxO/DAF-16 transcription factor, and increased mRNA expression of this gene and its downstream targets sod-3, hsp12.3, and hsp16.2. In conclusion, this study strongly demonstrates anti-oxidant and anti-ageing properties of H. scabra extracts containing triterpene glycosides, which, in the C. elegans model, may be mediated via the insulin/IGF-1 signaling (IIS)-DAF-16 pathway.


Subject(s)
Antioxidants/pharmacology , Biological Products/pharmacology , Caenorhabditis elegans/drug effects , Holothuria/chemistry , Longevity/drug effects , Animals , Chromatography, Liquid , Oxidative Stress , Signal Transduction , Tandem Mass Spectrometry
7.
Cell Tissue Res ; 367(2): 181-195, 2017 02.
Article in English | MEDLINE | ID: mdl-27957615

ABSTRACT

We previously analyzed the central nervous system (CNS) transcriptome and found three isotypes of long neuropeptide F (MrNPF-I, -II, -III) and four isoforms of short NPF (sMrNPF) in the giant freshwater prawn, Macrobrachium rosenbergii. We now validate the complete sequences of the MrNPF-I and -II precursor proteins, which show high similarity (91-95 %) to NPFs of the penaeus shrimp (PsNPF). MrNPF-I and -II precursors share 71 % amino acid identity, whereas the mature 32-amino-acid MrNPF-I and 69-amino-acid MrNPF-II are identical, except for a 37-amino-acid insert within the middle part of the latter. Both mature MrNPFs are almost identical to PsNPF-I and -II except for four amino acids at the mid-region of the peptides. Reverse transcription plus the polymerase chain reaction revealed that transripts of MrNPF-I and -II were expressed in various parts of CNS including the eyestalk, brain and thoracic and abdominal ganglia, with the highest expression occurring in the brain and thoracic ganglia and with MrNPF-I showing five- to seven-fold higher expression than MrNPF-II. These peptides were also expressed in the midgut hindgut, and hepatopancreas, with MrNPF-I expression in the former two organs being at the same level as that in the brain and thoracic ganglia and about 4-fold higher than NPF-II. The expression of NPFs was also detected in the testes and spermatic duct but appeared much weaker in the latter. Other tissues that also expressed a considerable amount of NPF-I included the hematopoeitic tissue, heart and muscle. By immunohistochemistry, we detected MrNPFs in neurons of clusters 2, 3 and 4 and neuropils ME, MT and SG of the optic ganglia, neurons in cluster 6 and neuropils AMPN, PMPN, PT, PB and CB of the medial protocerebrum, neurons in clusters 9 and 11 and neurophils ON and OGTN of the deutocerebrum and neurons in clusters 14, 15 and 16 and neuropils TN and AnN of the tritocerebrum. Because of their high degree of conservation and strong and wide-spread expression in tissues other than CNS, we believe that, in addition to being a neuromodulator in controlling feeding, MrNPFs also play critical roles in tissue homeostasis. This should be further explored.


Subject(s)
Fresh Water , Neuropeptides/metabolism , Palaemonidae/metabolism , Amino Acid Sequence , Animals , Antibody Specificity , Base Sequence , Brain , Cloning, Molecular , DNA, Complementary/genetics , Eye , Fluorescent Antibody Technique , Gene Expression Profiling , Immunohistochemistry , Male , Neuropeptides/chemistry , Neuropeptides/genetics , Phylogeny , Real-Time Polymerase Chain Reaction , Sequence Alignment , Sequence Analysis, DNA , Tissue Distribution
8.
Steroids ; 107: 149-60, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26774430

ABSTRACT

The giant freshwater prawn, Macrobrachium rosenbergii, is important to many Asian countries due to its high economic value as an aquaculture product. With demand increasing, there is requirement for a better understanding of the biosynthetic components that regulate its growth and reproduction, including steroids, in order to help increase production. Vertebrate-type steroids and their receptors were identified in crustaceans and implicated in reproduction. In this study, we presented the sex steroids estradiol and progesterone by LC-MS/MS in female M. rosenbergii, and reveal steroidogenic-related genes by in silico analysis of de novo assembled transcriptomes. Comparative analysis with other species was performed to confirm their putative role, as well as tissue-specific and quantitative gene expression. We reveal 29 transcripts that encode for steroidogenic-related proteins, including steroidogenic enzymes, a nuclear steroid hormone receptors, and a steroidogenic factor. Moreover, we identified for the first time the presence of steroidogenic factor 1, StAR-related lipid transfer protein, estradiol receptor- and progesterone-like protein in M. rosenbergii. Those targeted for gene expression analysis (3 beta-hydroxysteroid dehydrogenase, 17 beta-hydroxysteroid dehydrogenase, estrogen sulfotransferase and progesterone receptor-like) showed widespread expression within many tissues, and at relatively high levels in the central nervous system (CNS) during ovarian maturation. In summary, we provide further evidence for the existence of steroidogenic pathways in crustaceans, which may be useful for advancing prawn aquaculture.


Subject(s)
Arthropod Proteins/biosynthesis , Estradiol , Gene Expression Regulation/drug effects , Palaemonidae/metabolism , Progesterone , Animals , Estradiol/biosynthesis , Estradiol/pharmacology , Female , Progesterone/biosynthesis , Progesterone/pharmacology
9.
Gen Comp Endocrinol ; 223: 129-38, 2015 Nov 01.
Article in English | MEDLINE | ID: mdl-25963041

ABSTRACT

Prostaglandins (PGs) are important bioactive mediators for many physiological functions. In some decapod crustaceans, prostaglandin E2 (PGE2) has been detected in reproductive organs, and may play a role in the control of ovarian maturation. However, in the freshwater prawn, Macrobrachium rosenbergii, the presences of PGE2 and key enzymes for PGE2 biosynthesis, as well as its effects on ovarian maturation have not yet been investigated. In this study we reported the presence of PGE2, cyclooxygenase1 (COX1) and prostaglandin E synthase (PGES) in the ovarian tissues of M. rosenbergii, using immunohistochemistry. Intense immunoreactivities of PGE2 (PGE2-ir), COX1 (Cox1-ir) and PGES (PGES-ir) were detected in previtellogenic oocytes (Oc1 and Oc2), while the immunoreactivities were absent in the late vitellogenic oocytes (Oc4). This finding supports the hypothesis that the PGE2 biosynthesis occurs in the ovary of this prawn. To ascertain this finding we used LC-MS/MS to quantitate PGE2 concentrations during ovarian developmental cycle. The levels of PGE2 were significantly higher in the early ovarian stages (St I and II) than in the late stages (St III and IV). Moreover, we found that administration of PGE2 stimulated the ovarian maturation in this species by shortening the length of the ovarian cycle, increasing ovarian-somatic index, oocyte proliferation, and vitellogenin (Vg) level in the hemolymph.


Subject(s)
Dinoprostone/metabolism , Oocytes/cytology , Ovary/cytology , Ovary/metabolism , Palaemonidae/growth & development , Palaemonidae/metabolism , Vitellogenins/metabolism , Animals , Cell Proliferation , Cyclooxygenase 1/metabolism , Female , Fresh Water , Hemolymph/metabolism , Immunohistochemistry , Intramolecular Oxidoreductases/metabolism , Oocytes/metabolism , Prostaglandin-E Synthases , Tandem Mass Spectrometry
10.
PLoS One ; 10(3): e0120412, 2015.
Article in English | MEDLINE | ID: mdl-25781176

ABSTRACT

Testis maturation, germ cell development and function of sperm, are related to lipid composition. Phosphatidylcholines (PCs) play a key role in the structure and function of testes. As well, increases of polyunsaturated fatty acids (PUFA) and highly unsaturated fatty acids (HUFA), especially arachidonic acid (ARA), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA) are essential for male fertility. This study is the first report to show the composition and distribution of PCs and total fatty acids (FAs) in three groups of seminiferous tubules (STs) classified by cellular associations [i.e., A (STs with mostly early germ cells), B (STs with mostly spermatids), and C (STs with spermatozoa)], in three morphotypes of Macrobrachium rosenbergii, [i.e., small male (SM), orange claw male (OC), and blue claw male (BC)]. Thin layer chromatography exhibited levels of PCs reaching maxima in STs of group B. Imaging mass spectrometry showed remarkably high signals corresponding to PC (16:0/18:1), PC (18:0/18:2), PC (18:2/20:5), and PC (16:0/22:6) in STs of groups A and B. Moreover, most signals were detected in the early developing cells and the intertubular area, but not at the area containing spermatozoa. Finally, gas chromatography-mass spectrometry indicated that the major FAs present in the testes were composed of 14:0, 16:0, 17:0, 18:0, 16:1, 18:1, 18:2, 20:1, 20:2, 20:4, 20:5, and 22:6. The testes of OC contained the greatest amounts of these FAs while the testes of BC contained the least amounts of these FAs, and there was more EPA (20:5) in the testes of SM and OC than those in the BC. The increasing amounts of FAs in the SM and OC indicate that they are important for spermatogenesis and spermiogenesis. This knowledge will be useful in formulating diets containing PUFA and HUFA for prawn broodstocks in order to improve testis development, and lead to increased male fecundity.


Subject(s)
Fatty Acids/metabolism , Phosphatidylcholines/metabolism , Spermatozoa/metabolism , Testis/metabolism , Animals , Male , Mass Spectrometry , Palaemonidae , Spermatogenesis , Spermatozoa/cytology , Testis/cytology , Testis/growth & development
11.
Gen Comp Endocrinol ; 193: 10-8, 2013 Nov 01.
Article in English | MEDLINE | ID: mdl-23867230

ABSTRACT

Neurotransmitters and neurohormones are agents that control gonad maturation in decapod crustaceans. Of these, serotonin (5-HT) and dopamine (DA) are neurotransmitters with known antagonist roles in female reproduction, whilst gonadotropin-releasing hormones (GnRHs) and corazonin (Crz) are neurohormones that exercise both positive and negative controls in some invertebrates. However, the effects of these agents on the androgenic gland (AG), which controls testicular maturation and male sex development in decapods, via insulin-like androgenic gland hormone (IAG), are unknown. Therefore, we set out to assay the effects of 5-HT, DA, l-GnRH-III, oct-GnRH and Crz, on the AG of small male Macrobrachium rosenbergii (Mr), using histological studies, a BrdU proliferative cell assay, immunofluorescence of Mr-IAG, and ELISA of Mr-IAG. The results showed stimulatory effects by 5-HT and l-GnRH-III through significant increases in AG size, proliferation of AG cells, and Mr-IAG production (P<0.05). In contrast, DA and Crz caused inhibitory effects on the AG through significant decreases in AG size, proliferation of AG cells, and Mr-IAG production (P<0.05). Moreover, the prawns treated with Crz died before day 16 of the experimental period. We propose that 5-HT and certain GnRHs can be now used to stimulate reproduction in male M. rosenbergii, as they induce increases in AG and testicular size, IAG production, and spermatogenesis. The mechanisms by which these occur are part of our on-going research.


Subject(s)
Dopamine/pharmacology , Endocrine Glands/drug effects , Endocrine Glands/metabolism , Gonadotropin-Releasing Hormone/pharmacology , Insect Proteins/pharmacology , Neuropeptides/pharmacology , Palaemonidae/drug effects , Palaemonidae/metabolism , Serotonin/pharmacology , Androgens/metabolism , Animals , Female , Male
12.
Microsc Res Tech ; 76(1): 102-12, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23108973

ABSTRACT

Expression of a sex-specific gene in Macrobrachium rosenbergii (Mr-Mrr), encoding a male reproduction-related (Mrr) protein, has been identified in the spermatic ducts (SDs) and postulated to be involved in sperm maturation processes. M. rosenbergii is the only decapod that the expression and fate of the Mrr protein has been studied. To determine that this protein was conserved in decapods, we firstly used cloning techniques to identify the Mrr gene in two crabs, Portunus pelagicus (Pp-Mrr) and Scylla serrata (Ss-Mrr). We then investigated expression of Pp-Mrr by in situ hybridization, and immunolocalization, as well as phosphorylation and glycosylation modifications, and the fate of the protein in the male reproductive tract. Pp-Mrr was shown to have 632 nucleotides, and a deduced protein of 110 amino acids, with an unmodified molecular weight of 11.79 kDa and a mature protein with molecular weight of 9.16 kDa. In situ hybridization showed that Pp-Mrr is expressed in the epithelium of the proximal, middle, distal SDs, and ejaculatory ducts. In Western blotting, proteins of 10.9 and 17.2 kDa from SDs were all positive using anti-Mrr, antiphosphoserine/threonine, and antiphosphotyrosine. PAS staining showed they were also glycosylated. Immunolocalization studies showed Pp-Mrr in the SD epithelium, lumen, and on the acrosomes of spermatozoa. Immunofluorescence staining indicated the acrosome of spermatozoa contained the Mrr protein, which is phosphorylated with serine/threonine and tyrosine, and also glycosylated. The Mrr is likely to be involved in acrosomal activation during fertilization of eggs.


Subject(s)
Acrosome/metabolism , Arthropod Proteins/genetics , Arthropod Proteins/metabolism , Brachyura/genetics , Brachyura/metabolism , Amino Acid Sequence , Animals , Arthropod Proteins/chemistry , Base Sequence , Gene Expression , Male , Molecular Sequence Data , Protein Transport , Seminiferous Tubules/metabolism , Sperm Maturation , Spermatozoa/cytology , Spermatozoa/metabolism
13.
Cell Tissue Res ; 348(3): 609-23, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22427066

ABSTRACT

Phosphorylated sperm proteins are crucial for sperm maturation and capacitation as a priori to their fertilization with eggs. In the freshwater prawn, Macrobrachium rosenbergii, a male reproduction-related protein (Mar-Mrr) was known to be expressed only in the spermatic ducts as a protein with putative phosphorylation and may be involved in sperm capacitation in this species. We investigated further the temporal and spatial expression of the Mar-Mrr gene using RT-PCR and in situ hybridization and the characteristics and fate of the protein using immunblotting and immunocytochemistry. The Mar-Mrr gene was first expressed in 4-week-old post larvae and the protein was produced in epithelial cells lining the spermatic ducts, at the highest level in the proximal region and decreased in the middle and distal parts. The native protein had a MW of 17 kDa and a high degree of serine/threonine phosphorylation. It was transferred from the epithelial cells to become a major protein at the anterior region of the sperm. We suggest that it is involved in sperm capacitation and fertilization in this open thelycal species and this is being investigated.


Subject(s)
Fresh Water , Gene Expression Regulation , Palaemonidae/genetics , Proteins/genetics , Spermatic Cord/metabolism , Animals , Blotting, Western , Female , Fluorescent Antibody Technique , Immunoblotting , In Situ Hybridization , Male , Phosphorylation , Protein Transport , Proteins/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Reproduction/genetics , Reverse Transcriptase Polymerase Chain Reaction , Spermatic Cord/anatomy & histology , Spermatic Cord/cytology , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...