Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 12(1)2020 Jan 07.
Article in English | MEDLINE | ID: mdl-31936092

ABSTRACT

We investigate the adsorption of pH- or temperature-responsive polymer systems by ellipsometry and neutron reflectivity. To this end, temperature-responsive poly (N-isopropylacrylamide) (PNIPAM) brushes and pH-responsive poly (acrylic acid) (PAA) brushes have been prepared using the "grafting onto" method to investigate the adsorption process of polymers and its reversibility under controlled environment. To that purpose, macromolecular brushes were designed with various chain lengths and a wide range of grafting density. Below the transition temperature (LCST), the characterization of PNIPAM brushes by neutron reflectivity shows that the swelling behavior of brushes is in good agreement with the scaling models before they collapse above the LCST. The reversible adsorption on PNIPAM brushes was carried out with linear copolymers of N-isopropylacrylamide and acrylic acid, P(NIPAM-co-AA). While these copolymers remain fully soluble in water over the whole range of temperature investigated, a quantitative adsorption driven by solvophobic interactions was shown to proceed only above the LCST of the brush and to be totally reversible upon cooling. Similarly, the pH-responsive adsorption driven by electrostatic interactions on PAA brushes was studied with copolymers of NIPAM and N,N-dimethylaminopropylmethacrylamide, P(NIPAM-co-MADAP). In this case, the adsorption of weak polycations was shown to increase with the ionization of the PAA brush with interactions mainly located in the upper part of the brush at pH 7 and more deeply adsorbed within the brush at pH 9.

2.
J Colloid Interface Sci ; 448: 8-16, 2015 Jun 15.
Article in English | MEDLINE | ID: mdl-25706199

ABSTRACT

Copolymerizing an acrylic acid comonomer is often beneficial for the adhesive properties of waterborne pressure-sensitive adhesives (PSAs). Here, we demonstrate a new strategy in which poly(acrylic acid) (PAA) is distributed as a percolating network within a PSA film formed from a polymer colloid. A diblock copolymer composed of PAA and poly(n-butyl acrylate) (PBA) blocks was synthesized using reversible addition-fragmentation chain transfer (RAFT) polymerization and adsorbed onto soft acrylic latex particles prior to their film formation. The thin adsorbed shells on the particles create a percolating network that raises the elastic modulus, creep resistance and tensile strength of the final film. When the film formation occurs at pH 10, ionomeric crosslinking occurs, and high tack adhesion is obtained in combination with high creep resistance. The results show that the addition of an amphiphilic PAA-b-PBA diblock copolymer (2.0 wt.%) to a soft latex provides a simple yet effective means of adjusting the mechanical and adhesive properties of the resulting composite film.

3.
ACS Appl Mater Interfaces ; 5(6): 2137-45, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23429909

ABSTRACT

We present a simple technique to switch off the tack adhesion in selected areas of a colloidal nanocomposite adhesive. It is made from a blend of soft colloidal polymer particles and hard copolymer nanoparticles. In regions that are exposed to IR radiation, the nanoparticles sinter together to form a percolating skeleton, which hardens and stiffens the adhesive. The tack adhesion is lost locally. Masks can be made from silicone-coated disks, such as coins. Under the masks, adhesive island regions are defined with the surrounding regions being a nontacky coating. When optimizing the nanocomposite's adhesive properties, the addition of the hard nanoparticles raises the elastic modulus of the adhesive significantly, but adhesion is not lost because the yield point remains relatively low. During probe-tack testing, the soft polymer phases yield and enable fibrillation. After heating under IR radiation, the storage modulus increases by a factor of 5, and the yield point increases nearly by a factor of 6, such that yielding and fibrillation do not occur in the probe-tack testing. Hence, the adhesion is lost. Loading and unloading experiments indicate that a rigid skeleton is created when the nanoparticles sinter together, and it fractures under moderate strains. This patterning method is relatively simple and fast to execute. It is widely applicable to other blends of thermoplastic hard nanoparticles and larger soft particles.


Subject(s)
Infrared Rays , Nanocomposites/chemistry , Nanocomposites/radiation effects , Nanoparticles/chemistry , Nanoparticles/radiation effects , Surface Properties
4.
ACS Appl Mater Interfaces ; 4(10): 5442-52, 2012 Oct 24.
Article in English | MEDLINE | ID: mdl-22974179

ABSTRACT

Soft adhesives require an optimum balance of viscous and elastic properties. Adhesion is poor when the material is either too solidlike or too liquidlike. The ability to switch tack adhesion off at a desired time has many applications, such as in recycling, disassembly of electronics, and painless removal of wound dressings. Here, we describe a new strategy to switch off the tack adhesion in a model nanocomposite adhesive in which temperature is the trigger. The nanocomposite comprises hard methacrylic nanoparticles blended with a colloidal dispersion of soft copolymer particles. At relatively low volume fractions, the nanoparticles (50 nm diameter) accumulate near the film surface, where they pack around the larger soft particles (270 nm). The viscoelasticity of the nanocomposite is adjusted via the nanoparticle concentration. When the nanocomposite is heated above the glass transition temperature of the nanoparticles (T(g) = 130 °C), they sinter together to create a rigid network that raises the elastic modulus at room temperature. The tackiness is switched off. Intense infrared radiation is used to heat the nanocomposites, leading to a fast temperature rise. Tack adhesion is switched off within 30 s in optimized compositions. These one-way switchable adhesives have the potential to be patterned through localized heating.

SELECTION OF CITATIONS
SEARCH DETAIL
...