Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
Add more filters










Publication year range
1.
J Phys Chem C Nanomater Interfaces ; 126(43): 18333-18342, 2022 Nov 03.
Article in English | MEDLINE | ID: mdl-36366757

ABSTRACT

This paper examines the reactive surface dynamics of energy- and angle-selected N2 dissociation on a clean Ru(0001) surface. Presented herein are the first STM images of highly energetic N2 dissociation on terrace sites utilizing a novel UHV instrument that combines a supersonic molecular beam with an in situ STM that is in-line with the molecular beam. Atomically resolved visualization of individual N2 dissociation events elucidates the fundamental reactive dynamics of the N2/Ru(0001) system by providing a detailed understanding of the on-surface dissociation dynamics: the distance and angle between nitrogen atoms from the same dissociated N2 molecule, site specificity and coordination of binding on terrace sites, and the local evolution of surrounding nanoscopic areas. These properties are precisely measured over a range of impinging N2 kinetic energies and angles, revealing previously unattainable information about the energy dissipation channels that govern the reactivity of the system. The experimental results presented in this paper provide insight into the fundamental N2 dissociation mechanism that, in conjunction with ongoing theoretical modeling, will help determine the role of dynamical processes such as energy transfer to surface phonons and nonadiabatic excitation of electron-hole pairs (ehps). These results will not only help uncover the underlying chemistry and physics that give rise to the unique behavior of this activated dissociative chemisorption system but also represent an exciting approach to studying reaction dynamics by pairing the angstrom-level spatiotemporal resolution of an in situ STM with nonequilibrium fluxes of reactive gases generated in a supersonic molecular beam to access highly activated chemical dynamics and observe the results of individual reaction events.

2.
J Phys Chem A ; 126(17): 2729-2738, 2022 May 05.
Article in English | MEDLINE | ID: mdl-35452240

ABSTRACT

We present research that systematically examines acetone interacting with various D2O ices of terrestrial and astrophysical interest using time-resolved, in situ reflection absorption infrared spectroscopy (RAIRS). We examine acetone deposited on top of different D2O ice films: high-density, nonporous amorphous (np-ASW), and crystalline (CI) films as well as porous amorphous (p-ASW) with various pore morphologies. Analysis of RAIR spectra changes after acetone exposure, and we find that more hydrogen bonding occurs between acetone and p-ASW ices as compared to acetone and np-ASW or CI ices. Hydrogen bonding quantification occurred by two independent RAIR spectral changes: a greater relative intensity of the 1703 cm-1 feature at low acetone coverage as part of a 14 cm-1 shift in the C═O region and an ∼30% integrated dangling bond area reduction after acetone exposure. Interestingly, when changing the water structure to be more porous (deposited at 70° compared to 30°), there is a further reduction in the amount of hydrogen bonding that occurs. This suggests that there is a lack of access to surface sites with dangling bonds in the pores as initial layers of acetone block the pores and acetone is unable to diffuse within the structure at low temperatures. In general, these results offer a clearer picture of the mechanisms that can occur when small organic hydrocarbons interact with various icy interfaces; a quantitative understanding of these interactions is essential for the accurate modeling of many astrophysical processes occurring on the surface of icy dust particles.

3.
J Chem Phys ; 156(12): 124702, 2022 Mar 28.
Article in English | MEDLINE | ID: mdl-35364873

ABSTRACT

Helium atom scattering and density-functional theory (DFT) are used to characterize the phonon band structure of the (3 × 1)-O surface reconstruction of Nb(100). Innovative DFT calculations comparing surface phonons of bare Nb(100) to those of the oxide surface show increased resonances for the oxide, especially at higher energies. Calculated dispersion curves align well with experimental results and yield atomic displacements to characterize polarizations. Inelastic helium time-of-flight measurements show phonons with mixed longitudinal and shear-vertical displacements along both the ⟨1̄00⟩, Γ̄X̄ and ⟨11̄0⟩, Γ̄M̄ symmetry axes over the entire first surface Brillouin zone. Force constants calculated for bulk Nb, Nb(100), and the (3 × 1)-O Nb(100) reconstruction indicate much stronger responses from the oxide surface, particularly for the top few layers of niobium and oxygen atoms. Many of the strengthened bonds at the surface create the characteristic ladder structure, which passivates and stabilizes the surface. These results represent, to our knowledge, the first phonon dispersion data for the oxide surface and the first ab initio calculation of the oxide's surface phonons. This study supplies critical information for the further development of advanced materials for superconducting radiofrequency cavities.

4.
J Phys Chem A ; 125(42): 9405-9413, 2021 Oct 28.
Article in English | MEDLINE | ID: mdl-34658236

ABSTRACT

We examine the initial differential sticking probability of CH4 and CD4 on CH4 and CD4 ices under nonequilibrium flow conditions using a combination of experimental methods and numerical simulations. The experimental methods include time-resolved in situ reflection-absorption infrared spectroscopy (RAIRS) for monitoring on-surface gaseous condensation and complementary King and Wells mass spectrometry techniques for monitoring sticking probabilities that provide confirmatory results via a second independent measurement method. Seeded supersonic beams are employed so that the entrained CH4 and CD4 have the same incident velocity but different kinetic energies and momenta. We found that as the incident velocity of CH4 and CD4 increases, the sticking probabilities for both molecules on a CH4 condensed film decrease systematically, but that preferential sticking and condensation occur for CD4. These observations differ when condensed CD4 is used as the target interface, indicating that the film's phonon and rovibrational densities of states, and collisional energy transfer cross sections, have a role in differential energy accommodation between isotopically substituted incident species. Lastly, we employed a mixed incident supersonic beam composed of both CH4 and CD4 in a 3:1 ratio and measured the condensate composition as well as the sticking probability. When doing so, we see the same effect in the condensed mixed film, supporting an isotopic enrichment of the heavier isotope. We propose that enhanced multi-phonon interactions and inelastic cross sections between the incident CD4 projectile and the CH4 film allow for more efficacious gas-surface energy transfer. VENUS code MD simulations show the same sticking probability differences between isotopologues as observed in the gas-surface scattering experiments. Ongoing analyses of these trajectories will provide additional insights into energy and momentum transfer between the incident species and the interface. These results offer a new route for isotope enrichment via preferential condensation of heavier isotopes and isotopologues during gas-surface collisions under specifically selected substrate, gas-mixture, and incident velocity conditions. They also yield valuable insights into gaseous condensation under non-equilibrium conditions such as occur in aircraft flight in low-temperature environments. Moreover, these results can help to explain the increased abundance of deuterium in solar system planets and can be incorporated into astrophysical models of interstellar icy dust grain surface processes.

5.
ACS Appl Mater Interfaces ; 13(23): 27471-27480, 2021 Jun 16.
Article in English | MEDLINE | ID: mdl-34086431

ABSTRACT

A series of multistage (pressure-sensitive/hot melt) adhesives utilizing dynamic thia-Michael bonding motifs are reported. The benzalcyanoacetate Michael acceptors used in this work undergo bond exchange under ambient conditions without external catalysis, facilitating pressure-sensitive adhesion. A key feature of this system is the dynamic reaction-induced phase separation that lends reinforcement to the otherwise weakly bonded materials, enabling weak, repeatable pressure-sensitive adhesion under ambient conditions and strong adhesion when processed as a hot melt adhesive. By using different pairs of benzalcyanoacetate cross-linking units, the phase separation characteristics of the adhesives can be directly manipulated, allowing for a tailored adhesive response.

6.
J Phys Chem Lett ; 12(25): 5844-5849, 2021 Jul 01.
Article in English | MEDLINE | ID: mdl-34138568

ABSTRACT

Oxygen atoms on transition metal surfaces are highly mobile under the demanding pressures and temperatures typically employed for heterogeneously catalyzed oxidation reactions. This mobility allows for rapid surface diffusion of oxygen atoms, as well as absorption into the subsurface and reemergence to the surface, resulting in variable reactivity. Subsurface oxygen atoms play a unique role in the chemistry of oxidized metal catalysts, yet little is known about how subsurface oxygen is formed or returns to the surface. Furthermore, if oxygen diffusion between the surface and subsurface is mediated by defects, there will be localized changes in the surface chemistry due to the elevated oxygen concentration near the emergence sites. We observed that oxygen atoms emerge preferentially along the boundary between surface phases and that subsurface oxygen is depleted before the surface oxide decomposes.

7.
Phys Chem Chem Phys ; 23(13): 7902-7907, 2021 Apr 07.
Article in English | MEDLINE | ID: mdl-33346751

ABSTRACT

In this paper, we examine a new method for isotope separation involving the embedding of atoms and molecules into ice. This method is based upon isotope dependent embedding, i.e. capture, in a cryogenic matrix which exhibits excellent single-pass enrichment as demonstrated successfully for selected isotopes of Xe. This is a totally new method that holds significant promise as a quite general method for enrichment and purification. It is based upon exploiting the energetic and momentum barriers that need to be overcome in order to embed a given isotope or isotopologue into the capture matrix, initially amorphous ice. From our previous experiments, we know that there is a strong dependence of the embedding probability with incident momentum. Using supersonic molecular beam techniques, we generated Xe atomic beams of controlled velocities, relatively narrow velocity distributions due to supersonic expansion, and with all of the entrained isotopes having identical velocities arising from the seeded molecular beam expansion. As we had postulated, the heavier isotope becomes preferentially absorbed, i.e., embedded, in the ice matrix. Herein we demonstrate the efficacy of this method by comparing the capture of 134Xe and 136Xe to the reference isotope, 129Xe. Enrichment of the heavier isotopes in the capture matrix was 1.2 for 134Xe and 1.3 for 136Xe greater than that expected for natural abundance. Note that enriched isotopic fractions can be collected from either the condensate or the reflected fraction depending on interest in either the heavier or lighter isotope, respectively. Cycling of these single-step enrichment events for all methods can lead to significantly higher levels of purification, and routes to scale-up can be realistically envisioned. This method holds significant promise to be quite general in applicability, including both atomic isotopes or molecular isotopologues across a wide range of particle masses spanning, essentially, the periodic table. This topic has profound implications and significant potential impact for a wide-variety of isotope-based technologies in the physical and biological sciences, medicine, advanced energy and energetic systems, including isotopically-purified materials that exhibit high-performance electronic and thermal characteristics, as well as isotopically purified spin-free materials for use in quantum information science platforms.

8.
J Chem Phys ; 152(21): 214703, 2020 Jun 07.
Article in English | MEDLINE | ID: mdl-32505166

ABSTRACT

Niobium superconducting radio frequency (SRF) cavities enable the operation of modern superconducting accelerator facilities. These cavities do not approach the theoretical performance limits of Nb due to the deleterious effects of surface defects and chemical inhomogeneities such as Nb hydrides. Nitrogen doping is known to consistently increase the cavity performance and inhibit Nb hydride growth, but a comprehensive understanding of Nb hydride growth and suppression is not yet realized. Scanning tunneling microscopy (STM), scanning tunneling spectroscopy (STS), and density functional theory (DFT) calculations presented herein elucidate the real-time, nanoscale structural and electronic evolution of undoped, hydrogen doped, and hydrogen and nitrogen doped Nb(100) due to the growth and suppression of Nb nano-hydrides. DFT calculations in agreement with the experimental data found unique near-surface phases stabilized upon dopant incorporation. The experimental STM and STS results and DFT calculations reported herein provide the first in situ and real-time nanoscale visualization and characterization of the effects of nitrogen doping on Nb hydride suppression and growth. Such information allows for further optimization of nitrogen doping procedures and advances in the performance of SRF materials for next-generation SRF-based accelerators and free electron lasers.

9.
Science ; 366(6471): 1379-1384, 2019 12 13.
Article in English | MEDLINE | ID: mdl-31699884

ABSTRACT

The large-scale synthesis of high-quality thin films with extensive tunability derived from molecular building blocks will advance the development of artificial solids with designed functionalities. We report the synthesis of two-dimensional (2D) porphyrin polymer films with wafer-scale homogeneity in the ultimate limit of monolayer thickness by growing films at a sharp pentane/water interface, which allows the fabrication of their hybrid superlattices. Laminar assembly polymerization of porphyrin monomers could form monolayers of metal-organic frameworks with Cu2+ linkers or covalent organic frameworks with terephthalaldehyde linkers. Both the lattice structures and optical properties of these 2D films were directly controlled by the molecular monomers and polymerization chemistries. The 2D polymers were used to fabricate arrays of hybrid superlattices with molybdenum disulfide that could be used in electrical capacitors.

10.
ACS Nano ; 13(10): 11741-11752, 2019 Oct 22.
Article in English | MEDLINE | ID: mdl-31603647

ABSTRACT

Using environmentally controlled, high-speed atomic force microscopy (AFM), we examine dynamic fluctuations of topographically confined poly(styrene-block-methyl methacrylate) (PS-b-PMMA) cylinders. During thermal annealing, fluctuations drive perturbations of the block copolymer (BCP) interface between polymer domains, leading to pattern roughness. Whereas previous investigations have examined roughness in room-temperature and kinetically quenched samples, we directly visualize the dynamics of PS/PMMA interfaces in real space and time at in situ temperatures above the glass transition temperature, Tg. Imaging under these experimentally challenging thermal annealing conditions is critical to understanding the inherent connection between thermal fluctuations and BCP pattern assembly. Through the use of slow-scan-disabled AFM, we dramatically improve the imaging time resolution for tracking polymer dynamics. Fluctuations increase in intensity with temperature and, at high temperatures, become spatially coherent across their confining potential. Additionally, we observe that topographic confinement suppresses fluctuations and correlations in the proximity of the guiding field. In situ imaging at annealing temperatures represents a significant step in capturing the dynamics of chain mobility at BCP interfaces.

11.
J Phys Chem B ; 122(2): 455-463, 2018 01 18.
Article in English | MEDLINE | ID: mdl-28459150

ABSTRACT

We present work detailing the oxidative destruction of the nerve agent simulant diisopropyl methylphosphonate (DIMP) with O(3P) using time-resolved, in situ reflection absorption infrared spectroscopy (RAIRS) and X-ray photoelectron spectroscopy (XPS). Thermally annealed DIMP films deposited on Au(111) are observed to react upon exposure to a supersonic beam containing O(3P) with average translational energies of 0.12 eV. The reaction is initiated by a hydrogen abstraction from one of three possible sites on DIMP, and then progresses through various secondary reactions with resultant hydroxyl radicals, carbon-centered DIMP-derived radicals, and nondissociated O2 in the beam. These reactions are accompanied by uptake of oxygen into the film, leading to new hydrogen bonding with the DIMP phosphoryl group. The generated product also presents greater thermal stability than pristine DIMP, suggesting the formation of a distribution of oligomeric and polymeric products. As reactivity is observed to decrease upon continued O(3P) exposure, this product likely forms a protective layer at the vacuum-film interface, hindering destruction of thicker films. Importantly, the rate of reaction and general reactivity trends are the same between DIMP and the smaller simulant dimethyl methylphosphonate (DMMP). The comparable reaction rates of the two molecules coupled with oxygen's inability to erode thick films all the way down to the substrate have specific implications for the development of oxidation-based decontamination strategies for these and other organophosphates in the solid phase. The findings presented in this paper add significant new fundamental understanding of the oxidative chemistry of such species, knowledge needed in order to develop efficacious nerve agent decontamination strategies as well as the refinement of existing models for the dispersal, adsorption, persistence, and destruction of organophosphates in the environment.

12.
Phys Rev Lett ; 119(17): 176001, 2017 Oct 27.
Article in English | MEDLINE | ID: mdl-29219434

ABSTRACT

The separation of isotopes in space and time by gas-surface atomic diffraction is presented as a new means for isotopic enrichment. A supersonic beam of natural abundance neon is scattered from a periodic surface of methyl-terminated silicon, with the ^{20}Ne and ^{22}Ne isotopes scattering into unique diffraction channels. Under the experimental conditions presented in this Letter, a single pass yields an enrichment factor 3.50±0.30 for the less abundant isotope, ^{22}Ne, with extension to multiple passes easily envisioned. The velocity distribution of the incident beam is demonstrated to be the determining factor in the degree of separation between the isotopes' diffraction peaks. In cases where there is incomplete angular separation, the difference in arrival times of the two isotopes at a given scattered angle can be exploited to achieve complete temporal separation of the isotopes. This study explores the novel application of supersonic molecular beam studies as a viable candidate for separation of isotopes without the need for ionization or laser excitation.

13.
Nano Lett ; 17(12): 7717-7723, 2017 12 13.
Article in English | MEDLINE | ID: mdl-29172538

ABSTRACT

The kinetics of directed self-assembly of symmetric PS-b-PMMA diblock copolymer on chemically patterned templates were measured during in situ thermal annealing. Although these chemical guide patterns lead to well-aligned, defect-free lamellar patterns at thermodynamic equilibrium, in practice, challenges remain in understanding and optimizing the kinetic evolution for technological applications. High-speed, environmentally controlled atomic force microscopy imaging was used to track pattern evolution on the time scale of individual microdomain connections in real space and time, allowing the direct visualization of defect healing mechanisms. When we apply this highly general technique to films on chemically patterned substrates, we find that pattern alignment is mediated by a metastable nonbulk morphology unique to these samples, referred to as the "stitch" morphology. We observe diverse and anisotropic mechanisms for the conversion from this morphology to equilibrium lamellar stripes. Directed self-assembly on chemical templates is observed to follow exponential kinetics with an apparent energetic barrier of 360 ± 80 kJ/mol from 210-230 °C, a significant enhancement when compared with ordering rates on unpatterned substrates. Ultimately, from local imaging, we find that the presence of a chemical guiding field causes morphological ordering and lamellar alignment to occur irreversibly.

14.
J Chem Phys ; 145(8): 084705, 2016 Aug 28.
Article in English | MEDLINE | ID: mdl-27586939

ABSTRACT

Fundamental details concerning the interaction between H2 and CH3-Si(111) have been elucidated by the combination of diffractive scattering experiments and electronic structure and scattering calculations. Rotationally inelastic diffraction (RID) of H2 and D2 from this model hydrocarbon-decorated semiconductor interface has been confirmed for the first time via both time-of-flight and diffraction measurements, with modest j = 0 → 2 RID intensities for H2 compared to the strong RID features observed for D2 over a large range of kinematic scattering conditions along two high-symmetry azimuthal directions. The Debye-Waller model was applied to the thermal attenuation of diffraction peaks, allowing for precise determination of the RID probabilities by accounting for incoherent motion of the CH3-Si(111) surface atoms. The probabilities of rotationally inelastic diffraction of H2 and D2 have been quantitatively evaluated as a function of beam energy and scattering angle, and have been compared with complementary electronic structure and scattering calculations to provide insight into the interaction potential between H2 (D2) and hence the surface charge density distribution. Specifically, a six-dimensional potential energy surface (PES), describing the electronic structure of the H2(D2)/CH3-Si(111) system, has been computed based on interpolation of density functional theory energies. Quantum and classical dynamics simulations have allowed for an assessment of the accuracy of the PES, and subsequently for identification of the features of the PES that serve as classical turning points. A close scrutiny of the PES reveals the highly anisotropic character of the interaction potential at these turning points. This combination of experiment and theory provides new and important details about the interaction of H2 with a hybrid organic-semiconductor interface, which can be used to further investigate energy flow in technologically relevant systems.

15.
J Phys Chem A ; 120(27): 4863-71, 2016 Jul 14.
Article in English | MEDLINE | ID: mdl-26895563

ABSTRACT

We explored the interaction of a molecular beam of dimethyl methylphosphonate with a multilayer graphene surface to better understand the fate of chemical warfare agents in the environment. The experiments were done at surface temperatures between 120 and 900 K and translational energies between 200 and 1500 meV. At the lowest temperatures, the dimethyl methylphosphonate is adsorbed, with the molecules next to the carbon surface held slightly more strongly than the bulk molecular film that grows with continued dosing. We measured the desorption energy for submonolayer coverage using modulated beam techniques and found a value of 290 meV (28 kJ/mol). At higher surface temperatures, where the residence times are very short, we measured the scattering of the dimethyl methylphosphonate as a function of angle and translational kinetic energy. For a surface temperature of 250 K, with translational kinetic energies between 200 and 1500 meV, much of the incident flux has nearly been accommodated by the surface temperature and has no memory of the incident momentum. The internal energy also seems to be at least partially accommodated. As the surface temperature increases, the scattering transitions to direct-inelastic reflection, where much of the incident translational energy is retained, and the intensity of the scattering peaks superspecularly toward glancing final angles. These results demonstrate the efficacy of using kinetic energy controlled molecular beams to probe the interactions of complex organic molecules with well-defined surfaces, extending our fundamental understanding of how the dynamics for such systems crossover from trapping-desorption to direct inelastic scattering. Moreover, these results indicate that simulations that model the dispersal of chemical warfare agents using common interfaces in the environment need to account for multiple bounce trajectories and survival of the impinging molecules.

16.
J Chem Phys ; 143(12): 124705, 2015 Sep 28.
Article in English | MEDLINE | ID: mdl-26429030

ABSTRACT

A combined synthesis, experiment, and theory approach, using elastic and inelastic helium atom scattering along with ab initio density functional perturbation theory, has been used to investigate the vibrational dynamics and band structure of a recently synthesized organic-functionalized semiconductor interface. Specifically, the thermal properties and lattice dynamics of the underlying Ge(111) semiconductor crystal in the presence of a commensurate (1 × 1) methyl adlayer were defined for atomically flat methylated Ge(111) surfaces. The mean-square atomic displacements were evaluated by analysis of the thermal attenuation of the elastic He diffraction intensities using the Debye-Waller model, revealing an interface with hybrid characteristics. The methyl adlayer vibrational modes are coupled with the Ge(111) substrate, resulting in significantly softer in-plane motion relative to rigid motion in the surface normal. Inelastic helium time-of-flight measurements revealed the excitations of the Rayleigh wave across the surface Brillouin zone, and such measurements were in agreement with the dispersion curves that were produced using density functional perturbation theory. The dispersion relations for H-Ge(111) indicated that a deviation in energy and lineshape for the Rayleigh wave was present along the nearest-neighbor direction. The effects of mass loading, as determined by calculations for CD3-Ge(111), as well as by force constants, were less significant than the hybridization between the Rayleigh wave and methyl adlayer librations. The presence of mutually similar hybridization effects for CH3-Ge(111) and CH3-Si(111) surfaces extends the understanding of the relationship between the vibrational dynamics and the band structure of various semiconductor surfaces that have been functionalized with organic overlayers.

17.
J Phys Chem A ; 119(50): 12238-44, 2015 Dec 17.
Article in English | MEDLINE | ID: mdl-26275022

ABSTRACT

We present the first study detailing the capture and aggregation of hyperthermal CO2 molecules by amorphous solid water (ASW) under ultra-high vacuum conditions at 125 K, near the amorphous/crystalline transition. Using time-resolved in situ reflection-absorption infrared spectroscopy (RAIRS), CO2 molecules with translational energies above 3.0 eV are observed to directly embed underneath the vacuum-solid interface to become absorbed within the ice films despite an inability to adsorb at 125 K; this behavior is not observed for crystalline films. Upon embedding, the mobility of CO2 within 125 K amorphous ice and the strength of its intermolecular interactions result in its segregation into clusters within the ice films. Tracing the kinetics of CO2 embedding events under different energetic conditions allows for elucidation of the underlying dynamics, and we draw comparison with other projectiles we have studied to promote generalized conclusions in regard to empirical prediction of a projectile's embedding probability. Through application of a classical model of the entrance barrier for projectiles colliding with amorphous ice, we provide direct evidence for a unified connection between embedding probability and projectile momentum; an account of all embedding data measured by our group traces a unified barrier model. This work highlights the interplay between translational energy and momentum accommodation during collisions with ice in high speed gas flows.

18.
ACS Nano ; 9(1): 725-32, 2015 Jan 27.
Article in English | MEDLINE | ID: mdl-25531244

ABSTRACT

The electronic structure of single InSb quantum dots (QDs) with diameters between 3 and 7 nm was investigated using atomic force microscopy (AFM) and scanning tunneling spectroscopy (STS). In this size regime, InSb QDs show strong quantum confinement effects which lead to discrete energy levels on both valence and conduction band states. Decrease of the QD size increases the measured band gap and the spacing between energy levels. Multiplets of equally spaced resonance peaks are observed in the tunneling spectra. There, multiplets originate from degeneracy lifting induced by QD charging. The tunneling spectra of InSb QDs are qualitatively different from those observed in the STS of other III-V materials, for example, InAs QDs, with similar band gap energy. Theoretical calculations suggest the electron tunneling occurs through the states connected with L-valley of InSb QDs rather than through states of the Γ-valley. This observation calls for better understanding of the role of indirect valleys in strongly quantum-confined III-V nanomaterials.

19.
J Chem Phys ; 141(18): 18C514, 2014 Nov 14.
Article in English | MEDLINE | ID: mdl-25399179

ABSTRACT

The interaction of atomic and molecular species with water and ice is of fundamental importance for chemistry. In a previous series of publications, we demonstrated that translational energy activates the embedding of Xe and Kr atoms in the near surface region of ice surfaces. In this paper, we show that inert molecular species may be absorbed in a similar fashion. We also revisit Xe embedding, and further probe the nature of the absorption into the selvedge. CF4 molecules with high translational energies (≥3 eV) were observed to embed in amorphous solid water. Just as with Xe, the initial adsorption rate is strongly activated by translational energy, but the CF4 embedding probability is much less than for Xe. In addition, a larger molecule, SF6, did not embed at the same translational energies that both CF4 and Xe embedded. The embedding rate for a given energy thus goes in the order Xe > CF4 > SF6. We do not have as much data for Kr, but it appears to have a rate that is between that of Xe and CF4. Tentatively, this order suggests that for Xe and CF4, which have similar van der Waals radii, the momentum is the key factor in determining whether the incident atom or molecule can penetrate deeply enough below the surface to embed. The more massive SF6 molecule also has a larger van der Waals radius, which appears to prevent it from stably embedding in the selvedge. We also determined that the maximum depth of embedding is less than the equivalent of four layers of hexagonal ice, while some of the atoms just below the ice surface can escape before ice desorption begins. These results show that energetic ballistic embedding in ice is a general phenomenon, and represents a significant new channel by which incident species can be trapped under conditions where they would otherwise not be bound stably as surface adsorbates. These findings have implications for many fields including environmental science, trace gas collection and release, and the chemical composition of astrophysical icy bodies in space.

20.
J Chem Phys ; 141(2): 024702, 2014 Jul 14.
Article in English | MEDLINE | ID: mdl-25028033

ABSTRACT

A combined helium atom scattering and density functional perturbation theory study has been performed to elucidate the surface phonon dispersion relations for both the CH3-Si(111)-(1 × 1) and CD3-Si(111)-(1 × 1) surfaces. The combination of experimental and theoretical methods has allowed characterization of the interactions between the low energy vibrations of the adsorbate and the lattice waves of the underlying substrate, as well as characterization of the interactions between neighboring methyl groups, across the entire wavevector resolved vibrational energy spectrum of each system. The Rayleigh wave was found to hybridize with the surface rocking libration near the surface Brillouin zone edge at both the M̄-point and K̄-point. The calculations indicated that the range of possible energies for the potential barrier to the methyl rotation about the Si-C axis is sufficient to prevent the free rotation of the methyl groups at a room temperature interface. The density functional perturbation theory calculations revealed several other surface phonons that experienced mode-splitting arising from the mutual interaction of adjacent methyl groups. The theory identified a Lucas pair that exists just below the silicon optical bands. For both the CH3- and CD3-terminated Si(111) surfaces, the deformations of the methyl groups were examined and compared to previous experimental and theoretical work on the nature of the surface vibrations. The calculations indicated a splitting of the asymmetric deformation of the methyl group near the zone edges due to steric interactions of adjacent methyl groups. The observed shifts in vibrational energies of the -CD3 groups were consistent with the expected effect of isotopic substitution in this system.


Subject(s)
Phonons , Quantum Theory , Silicon/chemistry , Helium , Surface Properties , Temperature , Vibration
SELECTION OF CITATIONS
SEARCH DETAIL
...