Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Chem Phys ; 160(19)2024 May 21.
Article in English | MEDLINE | ID: mdl-38747431

ABSTRACT

In this paper, we present a combined experimental and theoretical study that explored the initial sticking of water on cooled surfaces. Specifically, these ultra-high vacuum gas-surface scattering experiments utilized supersonic molecular beam techniques in conjunction with a cryogenically cooled highly oriented pyrolytic graphite crystal, giving control over incident kinematic conditions. The D2O translational energy spanning 300-750 meV, the relative D2O flux, and the incident angle could all be varied independently. Three different experimental measurements were made. One involved measuring the total amount of D2O scattering as a function of surface temperature to determine the onset of sticking under non-equilibrium gas-surface collision conditions. Another measurement used He specular scattering to assess structural and coverage information for the interface during D2O adsorption. Finally, we used time-of-flight (TOF) measurements of the scattered D2O to determine how energy is exchanged with the graphite surface at surface temperatures above and near the conditions needed for gaseous condensation. For comparison and elaboration of the roles that internal degrees of freedom play in this process, we also did similar TOF measurements using another mass 20 incident particle, atomic neon. Enriching this study are precise molecular dynamics simulations that elaborate on gas-surface energy transfer and the roles of molecular degrees of freedom in gas-surface collisional energy exchange processes. This study furthers our fundamental understanding of energy exchange and the onset of sticking and ultimately gaseous condensation for gas-surface encounters occurring under high-velocity flows.

2.
Faraday Discuss ; 2024 May 17.
Article in English | MEDLINE | ID: mdl-38757539

ABSTRACT

We have developed the capability to elucidate interfacial reaction dynamics using an arguably unique combination of supersonic molecular beams combined with in situ STM visualization. These capabilities have been implemented in order to reveal the complex spatiotemporal correlations that govern the oxidation of graphitic systems spanning atomic-, nano-, and meso-length scales. In this study, the 3 nm periodic moiré pattern of monolayer and bilayer graphene on Ru(0001) provides a diverse palette of potential scattering and binding sites at the interface for ground state atomic oxygen. We resolve the site-specificity of atomic oxygen placement on the moiré lattice for both monolayer and bilayer graphene on Ru(0001) with atomic resolution. Angle- and energy-controlled scattering of O(3P) on these interfaces reveals an incisive side-by-side comparison of preferential reactivity of the monolayer surface compared to a more free-standing bilayer graphene ruthenium interface. Morphologically dependent reactivity of many layered graphene (HOPG) and monolayer graphene on Ru(0001) reveal anisotropic on-surface reactivity dependent on the presence of proximal reacted sites or local regions. The kinetics of on-surface oxidation are additionally shown to influence the morphology of surface products by varying the temperature of the interface and flux of reactant species. Such correlations are important in chemisorption, catalysis, materials oxidation and erosion, and film processing-and tunable moiré templated adsorption is a route to well-ordered self-assembled 2D materials for use in next-generation platforms for quantum devices and catalysis. Taken together, these results highlight a new direction in the examination of interfacial reaction dynamics where incident beam kinetic energy and angle of incidence can be used as reaction control parameters, with outcomes such as site-specific reactivity, changes for overall time-evolving mechanisms, and the relative importance of non-adiabatic channels in adsorption all linked to the on-surface fate of chemisorbed species.

3.
J Phys Chem Lett ; 15(10): 2936-2943, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38451507

ABSTRACT

Nano-periodic arrays of atomic oxygen are visualized on epitaxial graphene on Ru(0001) via STM following supersonic beam exposure to non-equilibrium fluxes of atomic oxygen. Self-organization of atomic oxygen on graphene is directed by the intrinsic moiré pattern of the ruthenium-graphene interface. Atom-resolved STM imaging reveals the richness of multiparticle interactions, leading to correlated atomic diffusion and placement. Pair-distribution functions demonstrate that repulsive oxygen-oxygen interactions play an increasingly important role in the site specificity and diffusivity of atomic oxygen on the moiré lattice with increasing coverage. Atomic visualization shows the number of oxygen atoms in a local region changes overall diffusion rates and promotes the correlated motion of oxygen atoms. Understanding the site specificity of oxygen adsorption and diffusive behavior of atomic oxygen on epitaxial graphene on Ru(0001) provides insight for both the synthesis and stability of moiré-templated two-dimensional materials which show promise as platforms for next-generation quantum materials and catalysts.

4.
ACS Nano ; 17(6): 5644-5652, 2023 Mar 28.
Article in English | MEDLINE | ID: mdl-36912602

ABSTRACT

As a platform for investigating two-dimensional phase separation, we track the structural evolution of block copolymer thin films during thermal annealing with environmentally controlled atomic force microscopy (AFM). Upon thermal annealing, block copolymer films with incommensurate thickness separate into a terraced morphology decorated with holes. With in situ imaging at 200 °C, we follow the continuous progression of terrace formation in a single region of a cylinder-forming poly(styrene-block-methyl methacrylate) thin film, beginning with the disordered morphology on an unpatterned silicon substrate and continuing through nucleation and coarsening stages. Topographic AFM imaging with nanoscale resolution simultaneously captures ensemble hole growth statistics while locally tracking polymer diffusion through measurements of the film thickness. At early times, we observe homogeneous hole nucleation and isotropic growth, with kinetics following the predictions of classical nucleation theory. At later times, however, we find anomalous hole growth which arises due to the combination of Ostwald ripening and coalescence mechanisms. In each case, our real-space observations highlight the importance of hole interactions for determining coarsening kinetics, mediated either through the interconnected phase for Ostwald ripening or through binary collision events for coalescence.

5.
Chem Rev ; 121(15): 9450-9501, 2021 08 11.
Article in English | MEDLINE | ID: mdl-34213328

ABSTRACT

The structure, chemistry, and charge of interfaces between materials and aqueous fluids play a central role in determining properties and performance of numerous water systems. Sensors, membranes, sorbents, and heterogeneous catalysts almost uniformly rely on specific interactions between their surfaces and components dissolved or suspended in the water-and often the water molecules themselves-to detect and mitigate contaminants. Deleterious processes in these systems such as fouling, scaling (inorganic deposits), and corrosion are also governed by interfacial phenomena. Despite the importance of these interfaces, much remains to be learned about their multiscale interactions. Developing a deeper understanding of the molecular- and mesoscale phenomena at water/solid interfaces will be essential to driving innovation to address grand challenges in supplying sufficient fit-for-purpose water in the future. In this Review, we examine the current state of knowledge surrounding adsorption, reactivity, and transport in several key classes of water/solid interfaces, drawing on a synergistic combination of theory, simulation, and experiments, and provide an outlook for prioritizing strategic research directions.

6.
Phys Chem Chem Phys ; 23(13): 7653-7672, 2021 Apr 07.
Article in English | MEDLINE | ID: mdl-33625410

ABSTRACT

Helium Atom Scattering (HAS) and Helium Spin-Echo scattering (HeSE), together helium scattering, are well established, but non-commercial surface science techniques. They are characterised by the beam inertness and very low beam energy (<0.1 eV) which allows essentially all materials and adsorbates, including fragile and/or insulating materials and light adsorbates such as hydrogen to be investigated on the atomic scale. At present there only exist an estimated less than 15 helium and helium spin-echo scattering instruments in total, spread across the world. This means that up till now the techniques have not been readily available for a broad scientific community. Efforts are ongoing to change this by establishing a central helium scattering facility, possibly in connection with a neutron or synchrotron facility. In this context it is important to clarify what information can be obtained from helium scattering that cannot be obtained with other surface science techniques. Here we present a non-exclusive overview of a range of material properties particularly suited to be measured with helium scattering: (i) high precision, direct measurements of bending rigidity and substrate coupling strength of a range of 2D materials and van der Waals heterostructures as a function of temperature, (ii) direct measurements of the electron-phonon coupling constant λ exclusively in the low energy range (<0.1 eV, tuneable) for 2D materials and van der Waals heterostructures (iii) direct measurements of the surface boson peak in glassy materials, (iv) aspects of polymer chain surface dynamics under nano-confinement (v) certain aspects of nanoscale surface topography, (vi) central properties of surface dynamics and surface diffusion of adsorbates (HeSE) and (vii) two specific science case examples - topological insulators and superconducting radio frequency materials, illustrating how combined HAS and HeSE are necessary to understand the properties of quantum materials. The paper finishes with (viii) examples of molecular surface scattering experiments and other atom surface scattering experiments which can be performed using HAS and HeSE instruments.

7.
Am J Bot ; 103(6): 1006-19, 2016 06.
Article in English | MEDLINE | ID: mdl-27335390

ABSTRACT

PREMISE OF THE STUDY: Most pollen walls are interrupted by apertures, thin areas providing access to stigmatic fluids and exit points for pollen tubes. Unexpectedly, pollen tubes of Arabidopsis thaliana are not obligated to pass through apertures and can instead take the shortest route into the stigma, passing directly through a nonaperturate wall. METHODS: We used stains and confocal microscopy to follow early pollen tube formation in A. thaliana and 200+ other species. We germinated pollen in vitro and in situ (at control and high humidities) and also used atomic force microscopy to assay material properties of nonaperture and aperture walls. KEY RESULTS: Pollen tubes of A. thaliana breached nonaperture walls despite these being an order of magnitude stiffer than aperture walls. Breakout was associated with localized swelling of the pectin-rich (alcian blue positive) intine. The precision of pollen tube exit at the pollen-stigma interface was lost at high humidity. Pollen from ∼4% of the species surveyed exhibited breakout germination behavior; all nine breakout species identified so far are in the Brassicaceae family (∼25% of the Brassicaceae sampled) and are scattered across seven tribes. CONCLUSIONS: The polarity of pollen germination in A. thaliana is externally induced, not linked to aperture location. The biomechanical force for breaking nonaperture walls is found in localized swelling of intine pectins. As such, the pollen from A. thaliana, and likely many Brassicaceae family members, are functionally omniaperturate. This new mechanism for germination between extant apertures raises questions about exine porosity and the diversity of mechanisms across taxa.


Subject(s)
Arabidopsis/physiology , Brassicaceae/physiology , Cell Wall/physiology , Pollen/physiology , Germination , Humidity , Microscopy, Atomic Force , Pectins/metabolism , Phylogeny , Pollen Tube/physiology , Seeds/physiology
8.
Small ; 5(15): 1776-83, 2009 Aug 03.
Article in English | MEDLINE | ID: mdl-19367599

ABSTRACT

One approach for making inexpensive inorganic-organic hybrid photovoltaic (PV) cells is to fill highly ordered TiO(2) nanotube (NT) arrays with solid organic hole conductors such as conjugated polymers. Here, a new in situ UV polymerization method for growing polythiophene (UV-PT) inside TiO(2) NTs is presented and compared to the conventional approach of infiltrating NTs with pre-synthesized polymer. A nanotubular TiO(2) substrate is immersed in a 2,5-diiodothiophene (DIT) monomer precursor solution and then irradiated with UV light. The selective UV photodissociation of the C--I bond produces monomer radicals with intact pi-ring structure that further produce longer oligothiophene/PT molecules. Complete photoluminescence quenching upon UV irradiation suggests coupling between radicals created from DIT and at the TiO(2) surface via a charge transfer complex. Coupling with the TiO(2) surface improves UV-PT crystallinity and pi-pi stacking; flat photocurrent values show that charge recombination during hole transport through the polymer is negligible. A non-ideal, backside-illuminated setup under illumination of 620-nm light yields a photocurrent density of approximately 5 microA cm(2)-surprisingly much stronger than with comparable devices fabricated with polymer synthesized ex situ. Since in this backside architecture setup we illuminate the cell through the Ag top electrode, there is a possibility for Ag plasmon-enhanced solar energy conversion. By using this simple in situ UV polymerization method that couples the conjugated polymer to the TiO(2) surface, the absorption of sunlight can be improved and the charge carrier mobility of the photoactive layer can be enhanced.


Subject(s)
Electric Power Supplies , Polymers/chemistry , Ultraviolet Rays , Electricity , Luminescence , Nanotubes/radiation effects , Nanotubes/ultrastructure , Photons , Spectrophotometry, Ultraviolet , Spectroscopy, Fourier Transform Infrared , Surface Properties/radiation effects , Titanium/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...