Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 69
Filter
Add more filters










Publication year range
1.
Macromol Rapid Commun ; : e2300665, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38444218

ABSTRACT

Glycidyl ethers are prepared from a series of furan-based diols and cured with a diamine to form thermosets. The furan diols demonstrate lower toxicity than bisphenol-A in a prior study. The diglycidyl ethers show improved thermal stability compared to the parent diols. Cured thermosets are prepared at elevated temperature using isophorone diamine (IPDA). Glass transition temperatures are in the range of 30-54 °C and depend on the structure of the furan diol. Coatings are prepared on steel substrates and show very high hardness, good adhesion, and a range of flexibility. Properties compare favorably with a control based on a bisphenol-A epoxy resin. The study demonstrates that epoxy resins based on furan diols, which have been shown to have lower toxicity than bisphenol-A, can form thermosets having properties comparable to a standard epoxy resin system; and thus, are viable as replacements for bisphenol-A epoxy resins.

2.
Angew Chem Int Ed Engl ; 61(31): e202203353, 2022 08 01.
Article in English | MEDLINE | ID: mdl-35545813

ABSTRACT

Photodegradable, recyclable, and renewable, crosslinked polymers from bioresources show promise towards developing a sustainable strategy to address the issue of plastics degradability and recyclability. Photo processes are not widely exploited for upcycling polymers in spite of the potential to have spatial and temporal control of the degradation in addition to being a green process. In this report we highlight a methodology in which biomass-derived crosslinked polymers can be programmed to degrade at ≈300 nm with ≈60 % recovery of the monomer. The recovered monomer was recycled back to the crosslinked polymer.


Subject(s)
Plastics , Polymers , Biomass
3.
Chem Rev ; 122(6): 5842-5976, 2022 03 23.
Article in English | MEDLINE | ID: mdl-35073048

ABSTRACT

Benefiting from the impressive increase in fundamental knowledge, the last 20 years have shown a continuous burst of new ideas and consequently a plethora of new catalytic methods for enantioselective radical reactions. This review aims to provide a complete survey of progress achieved over this latter period. The first part of this review focuses on the use of chiral organocatalysts, and these include catalysts covalently linked to the substrate and those that interact with the substrate by weaker interactions like hydrogen bonds. The second part of the review is devoted to transition-metal redox catalysis which is organized according to increasing atomic number for the first-row transition metals (Ti, Cr, Fe, Mn, Co, Ni, Cu). Bioinspired manganese- and iron-mediated hydroxylations and oxidations are also discussed. A specific section is dedicated to the reactivity of Ru, Rh, and Ir complexes as Lewis acids with a special focus on complexes chiral at metal. Absorption of photons result in different events such as energy transfer, single-electron transfer, and hydrogen-atom transfer facilitating the formation of radicals. Organocatalysis has been successfully combined with photocatalysts, a reactivity which has opened new pathways enlarging the number of radical precursors available. The merger of photocatalysis with organo- or metalla-photocatalysis has brought novelty and allowed for the discovery of a large number of original transformations. The use of enzyme-catalyzed reactions involving radical intermediates which also largely benefit from visible-light irradiation are included in the review. This review provides a comprehensive inventory of progress in enantioselective radical reactions with a goal of detailing the reaction mechanisms involved in these transformations such that any nonspecialist could find their own creativity to invent yet unknown applications.


Subject(s)
Hydrogen , Lewis Acids , Catalysis , Hydrogen/chemistry , Oxidation-Reduction , Stereoisomerism
4.
Angew Chem Int Ed Engl ; 60(2): 774-778, 2021 01 11.
Article in English | MEDLINE | ID: mdl-33090615

ABSTRACT

The factors responsible for the kinetic resolution of alcohols by chiral pyridine derivatives have been elucidated by measurements of relative rates for a set of substrates with systematically growing aromatic side chains using accurate competitive linear regression analysis. Increasing the side chain size from phenyl to pyrenyl results in a rate acceleration of more than 40 for the major enantiomer. Based on this observation a new catalyst with increased steric bulk has been designed that gives enantioselectivity values of up to s=250. Extensive conformational analysis of the relevant transition states indicates that alcohol attack to the more crowded side of the acyl-catalyst intermediate is favoured due to stabilizing CH-π-stacking interactions. Experimental and theoretical results imply that enantioselectivity enhancements result from accelerating the transformation of the major enantiomer through attractive non-covalent interactions (NCIs) rather than retarding the transformation of the minor isomer through repulsive steric forces.

5.
Molecules ; 25(12)2020 Jun 17.
Article in English | MEDLINE | ID: mdl-32560446

ABSTRACT

Biocomposites can be both environmentally and economically beneficial: during their life cycle they generally use and generate less petroleum-based carbon, and when produced from the byproduct of another industry or recycled back to the manufacturing process, they will bring additional economic benefits through contributing to a circular economy. Here we investigate and compare the environmental performance of a biocomposite composed of a soybean oil-based resin (epoxidized sucrose soyate) and flax-based reinforcement using life cycle assessment (LCA) methodology. We evaluate the main environmental impacts that are generated during the production of the bio-based resin used in the biocomposite, as well as the biocomposite itself. We compare the life cycle impacts of the proposed biocomposite to a functionally similar petroleum-based resin and flax fiber reinforced composite, to identify tradeoffs between the environmental performance of the two products. We demonstrate that the bio-based resin (epoxidized sucrose soyate) compared to a conventional (bisphenol A-based) resin shows lower negative environmental impacts in most studied categories. When comparing the biocomposite to the fossil fuel derived composite, it is demonstrated that using epoxidized sucrose soyate versus a bisphenol A (BPA)-based epoxy resin can improve the environmental performance of the composite in most categories except eutrophication and ozone layer depletion. For future designs, considering an alternative cross-linker to facilitate the bond between the bio-based resin and the flax fiber, may help improve the overall environmental performance of the biocomposite. An uncertainty analysis was also performed to evaluate the effect of variation in LCA model inputs on the environmental results for both the biocomposite and composite. The findings show a better overall carbon footprint for the biocomposite compared to the BPA-based composite at almost all times, demonstrating a good potential for marketability especially in the presence of incentives or regulations that address reducing the carbon intensity of products. This analysis allowed us to pinpoint hotspots in the biocomposite's supply chain and recommend future modifications to improve the product's sustainability.


Subject(s)
Epoxy Resins/chemistry , Epoxy Resins/chemical synthesis , Sucrose/chemistry , Environment
6.
Pharmacol Res Perspect ; 8(2): e00586, 2020 04.
Article in English | MEDLINE | ID: mdl-32342655

ABSTRACT

The prognosis for metastatic castration-resistant prostate cancer is unfavorable, and although Poly(ADP)-ribose polymerase-1 (PARP-1) inhibitors have shown efficacy in the treatment of androgen-receptor dependent malignancies, the limited number of options present obstacles for patients that are not responsive to these treatments. Here we utilize an integrated screening strategy that combines cellular screening assays, informatics, in silico computational approaches, and dose-response testing for reducing a compound library of confirmed PARP-1 inhibitors. Six hundred and sixty-four validated PARP-1 inhibitors were reduced to 9 small molecules with favorable physicochemical/ADME properties, unique chemical fingerprints, high dissimilarity to existing drugs, few off-target effects, and dose-responsivity in the 1 µmol/L - 20 µmol/L range. The top 9 unique molecules identified by our integrated screening strategy will be selected for further preclinical development including cytotoxicity testing, effects on mitosis, structure-activity relationship, physicochemical/ADME studies, and in vivo testing.


Subject(s)
Poly (ADP-Ribose) Polymerase-1/antagonists & inhibitors , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Prostatic Neoplasms/drug therapy , Cell Movement/drug effects , Cell Survival/drug effects , Computer Simulation , Humans , Male , PC-3 Cells
7.
Org Biomol Chem ; 16(33): 6155, 2018 08 22.
Article in English | MEDLINE | ID: mdl-30090886

ABSTRACT

Correction for 'Dibenzofuran-4,6-bis(oxazoline) (DBFOX). A novel trans-chelating bis(oxazoline) ligand for asymmetric reactions' by Kennosuke Itoh et al., Org. Biomol. Chem., 2018, DOI: 10.1039/c8ob01010 b.

8.
Org Biomol Chem ; 16(31): 5551-5565, 2018 08 08.
Article in English | MEDLINE | ID: mdl-29947634

ABSTRACT

The trans-chelating bis(oxazoline) ligand (R,R)-4,6-dibenzofurandiyl-2,2'-bis(4-phenyloxazoline) [(R,R)-DBFOX/Ph] coordinates metal ions to give C2-symmetric complexes which effectively catalyze a variety of asymmetric reactions. (R,R)-DBFOX/Ph·Ni(ClO4)2·3H2O, whose crystal structure is octahedral with three aqua ligands, can be stored under air for several months without loss of catalytic activity and promotes highly enantioselective reactions even in the presence of excess amounts of water, alcohols, amines, and acids. The complex shows remarkable chiral amplification in asymmetric Diels-Alder (DA) reactions. This review focuses on enantioselective reactions catalyzed by (R,R)-DBFOX/Ph·metal complexes.

9.
Org Biomol Chem ; 16(17): 3121-3126, 2018 05 02.
Article in English | MEDLINE | ID: mdl-29561025

ABSTRACT

The acylative dynamic kinetic resolution (DKR) of configurationally unstable biaryl atropisomers is achieved by using newly developed chiral dialkylaminopyridine catalysts with fluxional chirality. Various types of biaryl substrates containing phenolic structures were subjected to the DKR to obtain a range of acylated biaryl products with enantiomeric ratios up to 90 : 10.

10.
J Chromatogr A ; 1534: 101-110, 2018 Jan 26.
Article in English | MEDLINE | ID: mdl-29292081

ABSTRACT

Characterization of lignin and its degradation products, more specifically determination of their molecular weight (MW) distribution, is essential for assessment and applications of these potentially renewable phenolics. Several representative gel filtration and gel permeation systems were evaluated in this work focusing on understanding of undesired secondary non-SEC interactions while utilizing four sets of commercially available polymeric standards as well as low-MW lignin model compounds including diarene standards synthesized in-house. The gel permeation column with a nonpolar highly cross-linked porous polystyrene/divinylbenzene-based stationary phase provided the most effective separation by MW for both low and high MW model compounds. Notably, the column with a higher pore and lower particle size provided a better resolution towards polymeric standards, even though the particle size effect was downplayed in the earlier SEC studies of lignin. For two other evaluated gel filtration and gel permeation columns, the separation was strongly affected by functionalities of the analytes and correlated with the compounds' pKa rather than MW. We showed that the separation on the stationary phases featuring polar hydroxyl groups led to specific column-analyte secondary interactions, perhaps based on their hydrogen bonding with lignin. Further, the SEC column evaluation yielded similar results with two sets of chemically different standards. This setup may be used as a general approach to selecting an applicable column for lignin SEC analysis. We confirmed the obtained results with a different independent method implementing a novel approach for lignin number-average MW (Mn) calculation based on laser desorption/ionization time-of-flight mass spectrometry (LDI-TOF-MS) data. The determined Mn corroborated the SEC results.


Subject(s)
Chromatography, Gel/methods , Lignin/isolation & purification , Chromatography, Gel/standards , Lignin/chemistry , Molecular Weight , Particle Size , Phenols/chemistry , Phenols/isolation & purification , Phenols/standards , Polystyrenes/chemistry , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Vinyl Compounds/chemistry
11.
Angew Chem Int Ed Engl ; 55(18): 5446-51, 2016 04 25.
Article in English | MEDLINE | ID: mdl-27005562

ABSTRACT

Mechanistic investigations of the intermolecular [2+2] photocycloaddition of coumarin with tetramethylethylene mediated by thiourea catalysts reveal that the reaction is enabled by a combination of minimized aggregation, enhanced intersystem crossing, and altered excited-state lifetime(s). These results clarify how the excited-state reactivity can be manipulated through catalyst-substrate interactions and reveal a third mechanistic pathway for thiourea-mediated organo-photocatalysis.


Subject(s)
Alkenes/chemistry , Coumarins/chemistry , Thiourea/chemistry , Catalysis , Cycloaddition Reaction , Light , Models, Molecular , Photochemical Processes
13.
Chemistry ; 21(33): 11644-57, 2015 Aug 10.
Article in English | MEDLINE | ID: mdl-26237330

ABSTRACT

Biaryl compounds with axial chirality are very common in synthetic chemistry, especially in catalysis. Axially chiral biaryls are important due to their biological activities and extensive applications in asymmetric catalysis. Thus the development of efficient enantioselective methods for their synthesis has attracted considerable attention. This Minireview discusses the progress made in catalytic kinetic resolution of biaryl compounds and chronicles significant advances made recently in catalytic kinetic resolution of biaryl scaffolds.

14.
Chemistry ; 21(23): 8530-43, 2015 Jun 01.
Article in English | MEDLINE | ID: mdl-25926104

ABSTRACT

Creating structure-property correlations at different distance scales is one of the important challenges to the rational design of molecular gelators. Here, a series of dihydroxylated derivatives of long-chain fatty acids, derived from three naturally occurring molecules-oleic, erucic and ricinoleic acids-are investigated as gelators of a wide variety of liquids. Conclusions about what constitutes a more (or less!) efficient gelator are based upon analyses of a variety of thermal, structural, molecular modeling, and rheological results. Correlations between the manner of molecular packing in the neat solid or gel states of the gelators and Hansen solubility data from the liquids leads to the conclusion that diol stereochemistry, the number of carbon atoms separating the two hydroxyl groups, and the length of the alkanoic chains are the most important structural parameters controlling efficiency of gel formation for these gelators. Some of the diol gelators are as efficient or even more efficient than the well-known, excellent gelator, (R)-12-hydroxystearic acid; others are much worse. The ability to form extensive intermolecular H-bonding networks along the alkyl chains appears to play a key role in promoting fiber growth and, thus, gelation. In toto, the results demonstrate how the efficiency of gelation can be modulated by very small structural changes and also suggest how other structural modifications may be exploited to create efficient gelators.

15.
Org Lett ; 17(6): 1429-32, 2015 Mar 20.
Article in English | MEDLINE | ID: mdl-25730425

ABSTRACT

A (19)F DOSY protocol for the determination of formula weights for acid-base complexes in solution has been developed. (19)F internal standards were chosen and were used to evaluate the formula weights of complexes in solution using simple diffusion coefficient (D)-formula weight (FW) analysis. This method has potential applications in characterization of reactive intermediates in catalytic asymmetric reactions.

16.
Angew Chem Int Ed Engl ; 54(4): 1159-63, 2015 Jan 19.
Article in English | MEDLINE | ID: mdl-25394266

ABSTRACT

Renewable polymeric materials derived from biomass with built-in phototriggers were synthesized and evaluated for degradation under irradiation of UV light. Complete decomposition of the polymeric materials was observed with recovery of the monomer that was used to resynthesize the polymers.


Subject(s)
Polymers/chemistry , Furans/chemistry , Green Chemistry Technology , Photolysis , Ultraviolet Rays
17.
Org Lett ; 16(24): 6440-3, 2014 Dec 19.
Article in English | MEDLINE | ID: mdl-25490703

ABSTRACT

Enantioselective conjugate addition of malononitrile to pyrazolidinone-derived enoates proceeds in excellent yields and high enantioselectivities. A comparison of fluxional substituents with and without a Brønsted basic site and their impact on selectivity is detailed. Molecular sieves as an additive were found to be essential to achieve high enantioselectivity.

19.
Angew Chem Int Ed Engl ; 53(44): 11818-21, 2014 Oct 27.
Article in English | MEDLINE | ID: mdl-25124842

ABSTRACT

Can organocatalysts that incorporate fluxional groups provide enhanced selectivity in asymmetric transformations? To address this issue, we have designed chiral 4-dimethylaminopyridine (DMAP) catalysts with fluxional chirality. These catalysts were found to be efficient in promoting the acylative kinetic resolution of secondary alcohols and axially chiral biaryl compounds with selectivity factors of up to 37 and 51, respectively.

20.
Angew Chem Int Ed Engl ; 53(22): 5604-8, 2014 May 26.
Article in English | MEDLINE | ID: mdl-24740511

ABSTRACT

Can photocatalysis be performed without electron or energy transfer? To address this, organo-photocatalysts that are based on atropisomeric thioureas and display lower excited-state energies than the reactive substrates have been developed. These photocatalysts were found to be efficient in promoting the [2+2] photocycloaddition of 4-alkenyl-substituted coumarins, which led to the corresponding products with high enantioselectivity (77-96% ee) at low catalyst loading (1-10 mol%). The photocatalytic cycle proceeds by energy sharing via the formation of both static and dynamic complexes (exciplex formation), which is aided by hydrogen bonding.

SELECTION OF CITATIONS
SEARCH DETAIL
...