Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 12(4)2020 Apr 22.
Article in English | MEDLINE | ID: mdl-32331333

ABSTRACT

Thermoplastic resin transfer molding (T-RTM) is a cutting-edge manufacturing technique for high-volume production of composites with a recyclable thermoplastic matrix. Although a number of reactive thermoplastic matrices as well as industrial manufacturing equipment for T-RTM are commercially available today, the design of a T-RTM mold is still based on the skills and personal experience of the designer. This study summarizes the best knowledge and expertise in mold design and manufacturing and introduces an innovative mold for T-RTM. A concept and basic principles for designing a T-RTM mold are formulated in this study. The mold developed is manufactured and validated.

2.
Polymers (Basel) ; 11(10)2019 Sep 24.
Article in English | MEDLINE | ID: mdl-31554305

ABSTRACT

The production and consumption of polymer composites has grown continuously through recent decades and has topped 10 Mt/year. Until very recently, polymer composites almost exclusively had non-recyclable thermoset matrices. The growing amount of plastic, however, inevitably raises the issue of recycling and reuse. Therefore, recyclability has become of paramount importance in the composites industry. As a result, thermoplastics are coming to the forefront. Despite all their advantages, thermoplastics are difficult to use as the matrix of high-performance composites because their high viscosity complicates the impregnation process. A solution could be reactive thermoplastics, such as PA-6, which is synthesized from the ε-caprolactam (ε-CL) monomer via anionic ring opening polymerization (AROP). One of the fastest techniques to process PA-6 into advanced composites is thermoplastic resin transfer molding (T-RTM). Although nowadays T-RTM is close to commercial application, its optimization and control need further research and development, mainly assisted by modeling. This review summarizes recent progress in the modeling of the different aspects of the AROP of ε-CL. It covers the mathematical modeling of reaction kinetics, pressure-volume-temperature behavior, as well as simulation tools and approaches. Based on the research results so far, this review presents the current trends and could even plot the course for future research.

3.
Polymers (Basel) ; 10(4)2018 Mar 22.
Article in English | MEDLINE | ID: mdl-30966392

ABSTRACT

This paper presents a comprehensive overview of polymers and related (nano)composites produced via anionic ring opening polymerization (AROP) of lactams. It was aimed at surveying and showing the important research and development results achieved in this field mostly over the last two decades. This review covers the chemical background of the AROP of lactams, their homopolymers, copolymers, and in situ produced blends. The composites produced by AROP were grouped into nanocomposites, discontinuous fiber, continuous fiber, textile fabric, and self-reinforced composites. The manufacturing techniques were introduced and the most recent developments highlighted. Based on this state-of-art survey some future trends were deduced and as their "driving forces" novel and improved manufacturing techniques identified.

SELECTION OF CITATIONS
SEARCH DETAIL
...