Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Proc Natl Acad Sci U S A ; 121(4): e2313048121, 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38241439

ABSTRACT

The thalamus provides the principal input to the cortex and therefore understanding the mechanisms underlying cortical integration of sensory inputs requires to characterize the thalamocortical connectivity in behaving animals. Here, we propose tangential insertions of high-density electrodes into mouse cortical layer 4 as a method to capture the activity of thalamocortical axons simultaneously with their synaptically connected cortical neurons. This technique can reliably monitor multiple parallel thalamic synaptic inputs to cortical neurons, providing an efficient approach to map thalamocortical connectivity in both awake and anesthetized mice.


Subject(s)
Neurons , Thalamus , Mice , Animals , Neurons/physiology , Thalamus/physiology , Axons/physiology , Cerebral Cortex/physiology , Neural Pathways/physiology
2.
Elife ; 122023 09 08.
Article in English | MEDLINE | ID: mdl-37682267

ABSTRACT

The superior colliculus (SC) is a midbrain structure that receives inputs from retinal ganglion cells (RGCs). The SC contains one of the highest densities of inhibitory neurons in the brain but whether excitatory and inhibitory SC neurons differentially integrate retinal activity in vivo is still largely unknown. We recently established a recording approach to measure the activity of RGCs simultaneously with their postsynaptic SC targets in vivo, to study how SC neurons integrate RGC activity. Here, we employ this method to investigate the functional properties that govern retinocollicular signaling in a cell type-specific manner by identifying GABAergic SC neurons using optotagging in VGAT-ChR2 mice. Our results demonstrate that both excitatory and inhibitory SC neurons receive comparably strong RGC inputs and similar wiring rules apply for RGCs innervation of both SC cell types, unlike the cell type-specific connectivity in the thalamocortical system. Moreover, retinal activity contributed more to the spiking activity of postsynaptic excitatory compared to inhibitory SC neurons. This study deepens our understanding of cell type-specific retinocollicular functional connectivity and emphasizes that the two major brain areas for visual processing, the visual cortex and the SC, differently integrate sensory afferent inputs.


Subject(s)
Retina , Superior Colliculi , Animals , Mice , Retinal Ganglion Cells , GABAergic Neurons , Brain
3.
Sci Adv ; 9(19): eadf4240, 2023 05 12.
Article in English | MEDLINE | ID: mdl-37172095

ABSTRACT

Neurons in the mouse superior colliculus (SC) are arranged in a concentric orientation map, which is aligned to the center of vision and the optic flow experienced by the mouse. The origin of this map remains unclear. Here, we propose that spontaneous retinal waves during development provide a scaffold to establish the concentric orientation map within the SC and its alignment to the optic flow. We test this hypothesis by modeling the orientation-tuned SC neurons that receive ON/OFF retinal inputs. Our model suggests that the propagation direction bias of stage III retinal waves, together with OFF-delayed responses, shapes the spatial organization of the orientation map. The OFF delay establishes orientation-tuned neurons by segregating their ON/OFF receptive subfields, the wave-like activities form the concentric pattern, and the direction biases align the map to the center of vision. Together, retinal waves may play an instructive role in establishing functional properties of single SC neurons and their spatial organization within maps.


Subject(s)
Superior Colliculi , Vision, Ocular , Mice , Animals , Superior Colliculi/physiology , Retina/physiology , Neurons/physiology , Photic Stimulation
4.
Front Neurosci ; 16: 987939, 2022.
Article in English | MEDLINE | ID: mdl-36188480

ABSTRACT

Among the different autism spectrum disorders, Fragile X syndrome (FXS) is the most common inherited cause of intellectual disability. Sensory and especially auditory hypersensitivity is a key symptom in patients, which is well mimicked in the Fmr1 -/- mouse model. However, the physiological mechanisms underlying FXS's acoustic hypersensitivity in particular remain poorly understood. Here, we categorized spike response patterns to pure tones of different frequencies and intensities from neurons in the inferior colliculus (IC), a central integrator in the ascending auditory pathway. Based on this categorization we analyzed differences in response patterns between IC neurons of wild-type (WT) and Fmr1 -/- mice. Our results report broadening of frequency tuning, an increased firing in response to monaural as well as binaural stimuli, an altered balance of excitation-inhibition, and reduced response latencies, all expected features of acoustic hypersensitivity. Furthermore, we noticed that all neuronal response types in Fmr1 -/- mice displayed enhanced offset-rebound activity outside their excitatory frequency response area. These results provide evidence that the loss of Fmr1 not only increases spike responses in IC neurons similar to auditory brainstem neurons, but also changes response patterns such as offset spiking. One can speculate this to be an underlying aspect of the receptive language problems associated with Fragile X syndrome.

5.
Nat Commun ; 13(1): 5218, 2022 09 05.
Article in English | MEDLINE | ID: mdl-36064789

ABSTRACT

The superior colliculus is a midbrain structure that plays important roles in visually guided behaviors in mammals. Neurons in the superior colliculus receive inputs from retinal ganglion cells but how these inputs are integrated in vivo is unknown. Here, we discovered that high-density electrodes simultaneously capture the activity of retinal axons and their postsynaptic target neurons in the superior colliculus, in vivo. We show that retinal ganglion cell axons in the mouse provide a single cell precise representation of the retina as input to superior colliculus. This isomorphic mapping builds the scaffold for precise retinotopic wiring and functionally specific connection strength. Our methods are broadly applicable, which we demonstrate by recording retinal inputs in the optic tectum in zebra finches. We find common wiring rules in mice and zebra finches that provide a precise representation of the visual world encoded in retinal ganglion cells connections to neurons in retinorecipient areas.


Subject(s)
Retinal Ganglion Cells , Superior Colliculi , Animals , Axons/physiology , Electrodes , Mammals , Mice , Retina/physiology , Retinal Ganglion Cells/physiology , Superior Colliculi/physiology , Visual Pathways/physiology
6.
J Neurosci Methods ; 376: 109622, 2022 07 01.
Article in English | MEDLINE | ID: mdl-35525463

ABSTRACT

BACKGROUND: The superior colliculus (SC) is a midbrain structure that plays a central role in visual processing. Although we have learned a considerable amount about the function of single SC neurons, the way in which sensory information is represented and processed on the population level in awake behaving animals and across a large region of the retinotopic map is still largely unknown. Partially because the SC is anatomically located below the cortical sheet and the transverse sinus, which render the measure of neuronal activity from a large population of neurons in the SC technically difficult to perform. NEW METHOD: To address this, we propose a tangential recording configuration using high-density electrode probes (Neuropixels) in mouse SC in vivo. This method permits a large number of recording sites (~200) inside the SC circuitry allowing to record from a large population of SC neurons along a vast area of retinotopic space. RESULTS: This approach provides a unique opportunity to measure the activity of SC neuronal populations over up to ~2 mm of SC tissue reporting for the first time the continuous receptive fields coverage of almost the entire SC retinotopy. Here we describe how to perform targeted tangential recordings along the anterior-posterior and the medio-lateral axis of the mouse SC in vivo in the upper visual layers. Furthermore, we describe how to combine this approach with optogenetic tools for cell-type identification on the population level. COMPARISON WITH EXISTING METHODS: Vertical insertion has been a standard way to record visual responses in the SC. Inserting multi-shank probes vertically allows to cover a larger region of the SC but misses both the complete extent of the available retinotopy and the continuous measure allowed by the high density of recording sites on Neuropixels probes. CONCLUSION: Altogether tangential insertions in the upper visual layers of the mouse SC using Neuropixels permit for the first time to access a majority of the retinotopically organized visual representation of the world at an unprecedented precision.


Subject(s)
Superior Colliculi , Visual Fields , Animals , Electrodes , Humans , Mice , Neurons/physiology , Superior Colliculi/physiology , Visual Perception/physiology
7.
Neuron ; 109(22): 3688-3698.e6, 2021 11 17.
Article in English | MEDLINE | ID: mdl-34506724

ABSTRACT

We learn and remember multiple new experiences throughout the day. The neural principles enabling continuous rapid learning and formation of distinct representations of numerous sequential experiences without major interference are not understood. To understand this process, here we interrogated ensembles of hippocampal place cells as rats explored 15 novel linear environments interleaved with sleep sessions over continuous 16 h periods. Remarkably, we found that a population of place cells were selective to environment orientation and topology. This orientation selectivity property biased the network-level discrimination and re/mapping between multiple environments. Novel environmental representations emerged rapidly as more generic, but repeated experience within the environments subsequently enhanced their discriminability. Generalization of prior experience with different environments consequently improved network predictability of future novel environmental representations via strengthened generative predictive codes. These coding schemes reveal a high-capacity, high-efficiency neuronal framework for rapid representation of numerous sequential experiences with optimal discrimination-generalization balance and reduced interference.


Subject(s)
Memory , Place Cells , Animals , Generalization, Psychological/physiology , Hippocampus/physiology , Learning/physiology , Memory/physiology , Rats
8.
Neuron ; 103(4): 719-733.e7, 2019 08 21.
Article in English | MEDLINE | ID: mdl-31253469

ABSTRACT

A central goal in learning and memory research is to reveal the neural substrates underlying episodic memory formation. The hallmark of sequential spatial trajectory learning, a model of episodic memory, has remained equivocal, with proposals ranging from de novo creation of compressed sequential replay from blank slate networks to selection of pre-existing compressed preplay sequences. Here, we show that increased millisecond-timescale activation of cell assemblies expressed during de novo sequential experience and increased neuronal firing rate correlations can explain the difference between post-experience trajectory replay and robust preplay. This increased activation results from an improved neuronal tuning to specific cell assemblies, higher recruitment of experience-tuned neurons into pre-existing cell assemblies, and increased recruitment of cell assemblies in replay. In contrast, changes in overall neuronal and cell assembly temporal order within extended sequences do not account for sequential trajectory learning. We propose the coordinated strengthening of cell assemblies played sequentially on robust pre-existing temporal frameworks could support rapid formation of episodic-like memory.


Subject(s)
CA1 Region, Hippocampal/physiology , Memory, Episodic , Models, Neurological , Nerve Net/physiology , Neuronal Plasticity/physiology , Spatial Memory , Animals , CA1 Region, Hippocampal/cytology , Computer Simulation , Locomotion/physiology , Male , Rats , Rats, Long-Evans , Sleep/physiology , Statistical Distributions , Synaptic Transmission/physiology , Time Factors
9.
Hippocampus ; 29(3): 275-283, 2019 03.
Article in English | MEDLINE | ID: mdl-30260526

ABSTRACT

Spontaneous neuronal ensemble activity in the hippocampus is believed to result from a combination of preconfigured internally generated dynamics and the unique patterns of activity driven by recent experience. Previous research has established that preconfigured sequential neuronal patterns (i.e., preplay) contribute to the expression of future place cell sequences, which in turn contribute to the sequential neuronal patterns expressed post-experience (i.e., replay). The relative contribution of preconfigured and of experience-related factors to replay and to overall sequential activity during post-run sleep is believed to be highly biased toward the recent run experience, despite never being tested directly. Here, we use multi-neuronal sequence analysis unbiased by firing rate to compute and directly compare the contributions of internally generated and of recent experience-driven factors to the sequential neuronal activity in post-run sleep in naïve adult rats. We find that multi-neuronal sequences during post-run sleep are dominantly contributed by the pre-run preconfigured patterns and to a much smaller extent by the place cell sequences and associated awake rest multi-neuronal sequences experienced during de novo run session, which are weakly and similarly correlated with pre- and post-run sleep multi-neuronal sequences. These findings indicate a robust default internal organization of the hippocampal network into sequential neuronal ensembles that withstands a de novo spatial experience and suggest that integration of novel information during de novo experience leading to lasting changes in sequential network patterns is much more subtle than previously assumed.


Subject(s)
Hippocampus/physiology , Memory/physiology , Models, Neurological , Neurons/physiology , Animals , Male , Maze Learning/physiology , Rats , Rats, Long-Evans , Sleep/physiology
10.
Neuron ; 99(6): 1329-1341.e6, 2018 09 19.
Article in English | MEDLINE | ID: mdl-30146305

ABSTRACT

Rapid internal representations are continuously formed based on single experiential episodes in space and time, but the neuronal ensemble mechanisms enabling rapid encoding without constraining the capacity for multiple distinct representations are unknown. We developed a probabilistic statistical model of hippocampal spontaneous sequential activity and revealed existence of an internal model of generative predictive codes for the regularities of multiple future novel spatial sequences. During navigation, the inferred difference between external stimuli and the internal model was encoded by emergence of intrinsic-unlikely, novel functional connections, which updated the model by preferentially potentiating post-experience. This internal model and these predictive codes depended on neuronal organization into inferred modules of short, high-repeat sequential neuronal "tuplets" operating as "neuro-codons." We propose that flexible multiplexing of neuronal tuplets into repertoires of extended sequences vastly expands the capacity of hippocampal predictive codes, which could initiate top-down hierarchical cortical loops for spatial and mental navigation and rapid learning.


Subject(s)
Action Potentials/physiology , Hippocampus/physiology , Neurons/physiology , Space Perception/physiology , Animals , Humans , Learning/physiology , Male , Models, Neurological , Rats, Long-Evans , Temporal Lobe/physiology
11.
Neural Plast ; 2015: 109106, 2015.
Article in English | MEDLINE | ID: mdl-26346563

ABSTRACT

Recent evidence has shown that astrocytes play essential roles in synaptic transmission and plasticity. Nevertheless, how neuronal activity alters astroglial functional properties and whether such properties also display specific forms of plasticity still remain elusive. Here, we review research findings supporting this aspect of astrocytes, focusing on their roles in the clearance of extracellular potassium and glutamate, two neuroactive substances promptly released during excitatory synaptic transmission. Their subsequent removal, which is primarily carried out by glial potassium channels and glutamate transporters, is essential for proper functioning of the brain. Similar to neurons, different forms of short- and long-term plasticity in astroglial uptake have been reported. In addition, we also present novel findings showing robust potentiation of astrocytic inward currents in response to repetitive stimulations at mild frequencies, as low as 0.75 Hz, in acute hippocampal slices. Interestingly, neurotransmission was hardly affected at this frequency range, suggesting that astrocytes may be more sensitive to low frequency stimulation and may exhibit stronger plasticity than neurons to prevent hyperexcitability. Taken together, these important findings strongly indicate that astrocytes display both short- and long-term plasticity in their clearance of excess neuroactive substances from the extracellular space, thereby regulating neuronal activity and brain homeostasis.


Subject(s)
Astrocytes/metabolism , Glutamic Acid/metabolism , Neuronal Plasticity/physiology , Potassium/metabolism , Animals , Humans , Vesicular Glutamate Transport Proteins/metabolism
12.
Front Cell Neurosci ; 9: 189, 2015.
Article in English | MEDLINE | ID: mdl-26074766

ABSTRACT

Astrocytes are dynamic signaling brain elements able to sense neuronal inputs and to respond by complex calcium signals, which are thought to represent their excitability. Such signaling has been proposed to modulate, or not, neuronal activities ranging from basal synaptic transmission to epileptiform discharges. However, whether calcium signaling in astrocytes exhibits activity-dependent changes and acutely modulates short-term synaptic plasticity is currently unclear. We here show, using dual recordings of astroglial calcium signals and synaptic transmission, that calcium signaling in astrocytes displays, concomitantly to excitatory synapses, short-term plasticity in response to prolonged repetitive and tetanic stimulations of Schaffer collaterals. We also found that acute inhibition of calcium signaling in astrocytes by intracellular calcium chelation rapidly potentiates excitatory synaptic transmission and short-term plasticity of Shaffer collateral CA1 synapses, i.e., paired-pulse facilitation and responses to tetanic and prolonged repetitive stimulation. These data reveal that calcium signaling of astrocytes is plastic and down-regulates basal transmission and short-term plasticity of hippocampal CA1 glutamatergic synapses.

13.
PLoS Comput Biol ; 11(3): e1004137, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25826753

ABSTRACT

Neuronal excitability relies on inward sodium and outward potassium fluxes during action potentials. To prevent neuronal hyperexcitability, potassium ions have to be taken up quickly. However, the dynamics of the activity-dependent potassium fluxes and the molecular pathways underlying extracellular potassium homeostasis remain elusive. To decipher the specific and acute contribution of astroglial Kir4.1 channels in controlling potassium homeostasis and the moment to moment neurotransmission, we built a tri-compartment model accounting for potassium dynamics between neurons, astrocytes and the extracellular space. We here demonstrate that astroglial Kir4.1 channels are sufficient to account for the slow membrane depolarization of hippocampal astrocytes and crucially contribute to extracellular potassium clearance during basal and high activity. By quantifying the dynamics of potassium levels in neuron-glia-extracellular space compartments, we show that astrocytes buffer within 6 to 9 seconds more than 80% of the potassium released by neurons in response to basal, repetitive and tetanic stimulations. Astroglial Kir4.1 channels directly lead to recovery of basal extracellular potassium levels and neuronal excitability, especially during repetitive stimulation, thereby preventing the generation of epileptiform activity. Remarkably, we also show that Kir4.1 channels strongly regulate neuronal excitability for slow 3 to 10 Hz rhythmic activity resulting from probabilistic firing activity induced by sub-firing stimulation coupled to Brownian noise. Altogether, these data suggest that astroglial Kir4.1 channels are crucially involved in extracellular potassium homeostasis regulating theta rhythmic activity.


Subject(s)
Neuroglia/metabolism , Potassium Channels, Inwardly Rectifying/metabolism , Potassium/metabolism , Synaptic Transmission/physiology , Action Potentials , Animals , Astrocytes/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Models, Neurological , Neurons/metabolism
14.
J Physiol ; 592(1): 87-102, 2014 Jan 01.
Article in English | MEDLINE | ID: mdl-24081156

ABSTRACT

Astroglial processes enclose ∼60% of CA1 hippocampal synapses to form the tripartite synapse. Although astrocytes express ionic channels, neurotransmitter receptors and transporters to detect neuronal activity, the nature, plasticity and impact of the currents induced by neuronal activity on short-term synaptic plasticity remain elusive in hippocampal astrocytes. Using simultaneous electrophysiological recordings of astrocytes and neurons, we found that single stimulation of Schaffer collaterals in hippocampal slices evokes in stratum radiatum astrocytes a complex prolonged inward current synchronized to synaptic and spiking activity in CA1 pyramidal cells. The astroglial current is composed of three components sensitive to neuronal activity, i.e. a long-lasting potassium current mediated by Kir4.1 channels, a transient glutamate transporter current and a slow residual current, partially mediated by GABA transporters and Kir4.1-independent potassium channels. We show that all astroglial membrane currents exhibit activity-dependent short-term plasticity. However, only the astroglial glutamate transporter current displays neuronal-like dynamics and plasticity. As Kir4.1 channel-mediated potassium uptake contributes to 80% of the synaptically evoked astroglial current, we investigated in turn its impact on short-term synaptic plasticity. Using glial conditional Kir4.1 knockout mice, we found that astroglial potassium uptake reduces synaptic responses to repetitive stimulation and post-tetanic potentiation. These results show that astrocytes integrate synaptic activity via multiple ionic channels and transporters and contribute to short-term plasticity in part via potassium clearance mediated by Kir4.1 channels.


Subject(s)
Action Potentials , Astrocytes/metabolism , Neuronal Plasticity , Potassium/metabolism , Synapses/physiology , Amino Acid Transport System X-AG/metabolism , Animals , Astrocytes/physiology , CA1 Region, Hippocampal/cytology , CA1 Region, Hippocampal/metabolism , CA1 Region, Hippocampal/physiology , Mice , Mice, Inbred C57BL , Mice, Knockout , Potassium Channels, Inwardly Rectifying/genetics , Potassium Channels, Inwardly Rectifying/metabolism , Pyramidal Cells/metabolism , Pyramidal Cells/physiology , Synapses/metabolism , Synaptic Potentials
15.
J Vis Exp ; (69): e4418, 2012 Nov 26.
Article in English | MEDLINE | ID: mdl-23222635

ABSTRACT

Astrocytes form together with neurons tripartite synapses, where they integrate and modulate neuronal activity. Indeed, astrocytes sense neuronal inputs through activation of their ion channels and neurotransmitter receptors, and process information in part through activity-dependent release of gliotransmitters. Furthermore, astrocytes constitute the main uptake system for glutamate, contribute to potassium spatial buffering, as well as to GABA clearance. These cells therefore constantly monitor synaptic activity, and are thereby sensitive indicators for alterations in synaptically-released glutamate, GABA and extracellular potassium levels. Additionally, alterations in astroglial uptake activity or buffering capacity can have severe effects on neuronal functions, and might be overlooked when characterizing physiopathological situations or knockout mice. Dual recording of neuronal and astroglial activities is therefore an important method to study alterations in synaptic strength associated to concomitant changes in astroglial uptake and buffering capacities. Here we describe how to prepare hippocampal slices, how to identify stratum radiatum astrocytes, and how to record simultaneously neuronal and astroglial electrophysiological responses. Furthermore, we describe how to isolate pharmacologically the synaptically-evoked astroglial currents.


Subject(s)
Astrocytes/physiology , CA1 Region, Hippocampal/physiology , Neurons/physiology , Synapses/physiology , Animals , CA1 Region, Hippocampal/cytology , CA1 Region, Hippocampal/surgery , Electrophysiological Phenomena , Mice , Microtomy/methods , Patch-Clamp Techniques
16.
Hum Genet ; 129(3): 255-69, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21116650

ABSTRACT

Coffin-Lowry syndrome (CLS) is a syndromic form of mental retardation caused by loss of function mutations in the X-linked RPS6KA3 gene, which encodes RSK2, a serine/threonine kinase acting in the MAPK/ERK pathway. The mouse invalidated for the Rps6ka3 (Rsk2-KO) gene displays learning and long-term spatial memory deficits. In the current study, we compared hippocampal gene expression profiles from Rsk2-KO and normal littermate mice to identify changes in molecular pathways. Differential expression was observed for 100 genes encoding proteins acting in various biological pathways, including cell growth and proliferation, cell death and higher brain function. The twofold up-regulated gene (Gria2) was of particular interest because it encodes the subunit GLUR2 of the AMPA glutamate receptor. AMPA receptors mediate most fast excitatory synaptic transmission in the central nervous system. We provide evidence that in the hippocampus of Rsk2-KO mice, expression of GLUR2 at the mRNA and at the protein levels is significantly increased, whereas basal AMPA receptor-mediated transmission in the hippocampus of Rsk2-KO mice is significantly decreased. This is the first time that such deregulations have been demonstrated in the mouse model of the Coffin-Lowry syndrome. Our findings suggest that a defect in AMPA neurotransmission and plasticity contribute to mental retardation in CLS patients.


Subject(s)
Coffin-Lowry Syndrome/genetics , Hippocampus/enzymology , Receptors, AMPA/genetics , Ribosomal Protein S6 Kinases, 90-kDa/genetics , Animals , Coffin-Lowry Syndrome/metabolism , Disease Models, Animal , Gene Expression Profiling , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Receptors, AMPA/metabolism , Ribosomal Protein S6 Kinases, 90-kDa/metabolism , Synaptic Transmission/genetics , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL
...