Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
1.
medRxiv ; 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38946941

ABSTRACT

Background: Older adults with mild cognitive impairment (MCI) exhibit deficits in cerebrovascular reactivity (CVR), suggesting CVR is a biomarker for vascular contributions to MCI. This study examined if spontaneous CVR is associated with MCI and memory impairment. Methods: 161 older adults free of dementia or major neurological/psychiatric disorders were recruited. Participants underwent clinical interviews, cognitive testing, venipuncture for Alzheimer's biomarkers, and brain MRI. Spontaneous CVR was quantified during 5 minutes of rest. Results: Whole brain CVR was negatively associated with age, but not MCI. Lower CVR in the parahippocampal gyrus (PHG) was found in participants with MCI and was linked to worse memory performance on memory tests. Results remained significant after adjusting for Alzheimer's biomarkers and vascular risk factors. Conclusion: Spontaneous CVR deficits in the PHG are observed in older adults with MCI and memory impairment, indicating medial temporal microvascular dysfunction's role in cognitive decline.

2.
Res Sq ; 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38699342

ABSTRACT

Blood pressure variability (BPV) is emerging as an important risk factor across numerous disease states, including cerebrovascular and neurodegenerative disease in older adults. However, there is no current consensus regarding specific use cases for the numerous available BPV metrics. There is also little published data supporting the ability to reliably measure BPV across metrics in older adults. BPV metrics were derived from continuous beat-to-beat blood pressure monitoring data. Two sequential 7-minute waveforms were analyzed. Absolute and relative reliability testing was performed. Differences between antihypertensive medication users and non-users on BPV metric reliability was also assessed. All sequence and dispersion based BPV metrics displayed good test-retest reliability. A measure of BP instability displayed only moderate reliability. Systolic and diastolic average real variability displayed the highest levels of reliability at ICC= .87 and .82 respectively. Additionally, systolic average real variability was the most reliable metric in both the antihypertensive use group, and the no antihypertensive use group. Beat-to-beat dispersion and sequence-based metrics of BPV can be reliably obtained from older adults using noninvasive continuous blood pressure monitoring. Average real variability may be the most reliable and specific beat-to-beat blood pressure variability metric due to its decreased susceptibility to outliers and low frequency blood pressure oscillations.

3.
Neuroimage Rep ; 4(1)2024 Mar.
Article in English | MEDLINE | ID: mdl-38699510

ABSTRACT

Background: Blood pressure variability is increasingly linked with cerebrovascular disease and Alzheimer's disease, independent of mean blood pressure levels. Elevated blood pressure variability is also associated with attenuated cerebrovascular reactivity, which may have implications for functional hyperemia underpinning brain network connectivity. It remains unclear whether blood pressure variability is related to functional network connectivity. We examined relationships between beat-to-beat blood pressure variability and functional connectivity in brain networks vulnerable to aging and Alzheimer's disease. Methods: 53 community-dwelling older adults (mean [SD] age = 69.9 [7.5] years, 62.3% female) without history of dementia or clinical stroke underwent continuous blood pressure monitoring and resting state fMRI scan. Blood pressure variability was calculated as variability independent of mean. Functional connectivity was determined by resting state fMRI for several brain networks: default, salience, dorsal attention, fronto-parietal, and language. Multiple linear regression examined relationships between short-term blood pressure variability and functional network connectivity. Results: Elevated short-term blood pressure variability was associated with lower functional connectivity in the default network (systolic: standardized ß = -0.30 [95% CI -0.59, -0.01], p = .04). There were no significant associations between blood pressure variability and connectivity in other functional networks or between mean blood pressure and functional connectivity in any network. Discussion: Older adults with elevated short-term blood pressure variability exhibit lower resting state functional connectivity in the default network. Findings support the role of blood pressure variability in neurovascular dysfunction and Alzheimer's disease. Blood pressure variability may represent an understudied early vascular risk factor for neurovascular dysfunction relevant to Alzheimer's disease, with potential therapeutic implications.

4.
medRxiv ; 2024 May 03.
Article in English | MEDLINE | ID: mdl-38746307

ABSTRACT

Blood pressure variability (BPV) and arterial stiffness are age-related hemodynamic risk factors for neurodegenerative disease, but it remains unclear whether they exert independent or interactive effects on brain health. When combined with high inter-beat BPV, increased intra-beat BPV indicative of arterial stiffness could convey greater pressure wave fluctuations deeper into the cerebrovasculature, exacerbating neurodegeneration. This interactive effect was studied in older adults using multiple markers of neurodegeneration, including medial temporal lobe (MTL) volume, plasma neurofilament light (NfL) and glial fibrillary acidic protein (GFAP). Older adults (N=105) without major neurological or systemic disease were recruited and underwent brain MRI and continuous BP monitoring to quantify inter-beat BPV through systolic average real variability (ARV) and intra-beat variability through arterial stiffness index (ASI). Plasma NfL and GFAP were assessed. The interactive effect of ARV and ASI on MTL atrophy, plasma NfL, and GFAP was studied using hierarchical linear regression. Voxel-based morphometry (VBM) was used to confirm region-of-interest analysis findings. The interaction between higher ARV and higher ASI was significantly associated with left-sided MTL atrophy in both the region-of-interest and false discovery rate-corrected VBM analysis. The interactive effect was also significantly associated with increased plasma NfL, but not GFAP. The interaction between higher ARV and higher ASI is independently associated with increased neurodegenerative markers, including MTL atrophy and plasma NfL, in independently living older adults. Findings could suggest the increased risk for neurodegeneration associated with higher inter-beat BPV may be compounded by increased intra-beat variability due to arterial stiffness.

6.
Neurobiol Aging ; 139: 5-10, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38579393

ABSTRACT

Cerebrovascular reactivity (CVR) deficits may contribute to small vessel disease, such as white matter hyperintensities (WMH). Moreover, apolipoprotein-e4 (APOE4) carriers at genetic risk for Alzheimer's disease exhibit cerebrovascular dysfunction relative to non-carriers. We examined whether older adults, and APOE4 carriers specifically, with diminished CVR would exhibit higher WMH burden. Independently living older adults (N = 125, mean age = 69.2 years; SD = 7.6; 31.2% male) free of dementia or clinical stroke underwent brain MRI to quantify cerebral perfusion during CVR to hypercapnia and hypocapnia and determine WMH volume. Adjusting for age, sex and intracranial volume, hierarchical regression analysis revealed a significant association between whole brain CVR to hypercapnia and WMH overall [B = -.02, 95% CI (-.04, -.008), p =.003] and in APOE4 carriers [B = -.03, 95% CI (-.06, -.009), p =.009]. Findings suggest deficits in cerebral vasodilatory capacity are associated with WMH burden in older adults and future studies are warranted to further delineate the effect of APOE4 on precipitating WMH.


Subject(s)
Apolipoprotein E4 , Cerebrovascular Circulation , Magnetic Resonance Imaging , White Matter , Humans , Male , Female , Aged , White Matter/diagnostic imaging , White Matter/pathology , Apolipoprotein E4/genetics , Middle Aged , Aging/pathology , Aging/physiology , Heterozygote , Brain/diagnostic imaging , Brain/pathology , Brain/physiopathology , Brain/blood supply , Hypercapnia/physiopathology , Hypercapnia/diagnostic imaging , Risk , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/genetics , Alzheimer Disease/pathology
7.
J Alzheimers Dis ; 97(4): 1851-1860, 2024.
Article in English | MEDLINE | ID: mdl-38306042

ABSTRACT

Background: Recent observational studies suggest higher blood pressure (BP) variability (BPV) is associated with Alzheimer's disease (AD) biomarkers amyloid-beta (Aß) and tau. Less is known about relationships in interventional cohorts with strictly controlled mean BP levels. Objective: Investigate the longitudinal relationship between BPV and change in plasma AD biomarkers under standard versus intensive BP treatment. Methods: In this post hoc analysis of the SPRINT trial, 457 participants (n = 206 in standard group, n = 251 in intensive group) underwent repeated BP measurement between baseline and 12-months follow-up, and venipuncture at baseline and median (IQR) 3.5 (3.0-4.0) years later to determine plasma AD biomarkers total tau and Aß1-42:Aß1-40 ratio. BPV was calculated as tertiles of variability independent of mean. Linear mixed models investigated the effect of BPV×time on AD biomarker levels. Results: Higher BPV was associated with increased levels of total tau in the standard group (ß [95% CI] 1st versus 3rd tertiles of BPV: 0.21 [0.02, 0.41], p = 0.035), but not in the intensive group (ß [95% CI] 1st versus 3rd tertiles of BPV: -0.02 [-0.19, 0.16], p = 0.843). BPV was not associated with Aß 1-42:Aß 1-40 ratio in either group. Mean BP was not associated with biomarkers. Conclusions: Higher BPV was associated with increased plasma total tau under standard BP treatment. Findings add new evidence to prior observational work linking BPV to AD pathophysiology and suggest that, despite strict control of mean BP, BPV remains a risk for pathophysiological change underlying risk for AD.


Subject(s)
Alzheimer Disease , Humans , Blood Pressure , tau Proteins , Amyloid beta-Peptides , Biomarkers
8.
Aging Brain ; 4: 100085, 2023.
Article in English | MEDLINE | ID: mdl-37485296

ABSTRACT

Blood pressure variability (BPV), independent of mean blood pressure levels, is associated with cerebrovascular disease burden on MRI and postmortem evaluation. However, less is known about relationships with markers of cerebrovascular dysfunction, such as diminished spontaneous brain activity as measured by the amplitude of low frequency fluctuations (ALFF), especially in brain regions with vascular and neuronal vulnerability in aging. We investigated the relationship between short-term BPV and concurrent regional ALFF from resting state fMRI in a sample of community-dwelling older adults (n = 44) and healthy younger adults (n = 49). In older adults, elevated systolic BPV was associated with lower ALFF in widespread medial temporal regions and the anterior cingulate cortex. Higher systolic BPV in younger adults was also related to lower ALFF in the medial temporal lobe, albeit in fewer subregions, and the amygdala. There were no significant associations between systolic BPV and ALFF across the right/left whole brain or in the insular cortex in either group. Findings suggest a possible regional vulnerability to cerebrovascular dysfunction and short-term fluctuations in blood pressure. BPV may be an understudied risk factor for cerebrovascular changes in aging.

9.
Cogn Affect Behav Neurosci ; 23(5): 1401-1413, 2023 10.
Article in English | MEDLINE | ID: mdl-37442860

ABSTRACT

Individuals with high emotional granularity make fine-grained distinctions between their emotional experiences. To have greater emotional granularity, one must acquire rich conceptual knowledge of emotions and use this knowledge in a controlled and nuanced way. In the brain, the neural correlates of emotional granularity are not well understood. While the anterior temporal lobes, angular gyri, and connected systems represent conceptual knowledge of emotions, inhibitory networks with hubs in the inferior frontal cortex (i.e., posterior inferior frontal gyrus, lateral orbitofrontal cortex, and dorsal anterior insula) guide the selection of this knowledge during emotions. We investigated the structural neuroanatomical correlates of emotional granularity in 58 healthy, older adults (ages 62-84 years), who have had a lifetime to accrue and deploy their conceptual knowledge of emotions. Participants reported on their daily experience of 13 emotions for 8 weeks and underwent structural magnetic resonance imaging. We computed intraclass correlation coefficients across daily emotional experience surveys (45 surveys on average per participant) to quantify each participant's overall emotional granularity. Surface-based morphometry analyses revealed higher overall emotional granularity related to greater cortical thickness in inferior frontal cortex (pFWE < 0.05) in bilateral clusters in the lateral orbitofrontal cortex and extending into the left dorsal anterior insula. Overall emotional granularity was not associated with cortical thickness in the anterior temporal lobes or angular gyri. These findings suggest individual differences in emotional granularity relate to variability in the structural neuroanatomy of the inferior frontal cortex, an area that supports the controlled selection of conceptual knowledge during emotional experiences.


Subject(s)
Emotions , Frontal Lobe , Humans , Aged , Frontal Lobe/diagnostic imaging , Frontal Lobe/pathology , Brain/pathology , Prefrontal Cortex , Temporal Lobe/diagnostic imaging , Magnetic Resonance Imaging
10.
J Am Heart Assoc ; 12(12): e029797, 2023 06 20.
Article in English | MEDLINE | ID: mdl-37301768

ABSTRACT

Background Blood pressure variability (BPV) is predictive of cerebrovascular disease and dementia, possibly though cerebral hypoperfusion. Higher BPV is associated with cerebral blood flow (CBF) decline in observational cohorts, but relationships in samples with strictly controlled blood pressure remain understudied. We investigated whether BPV relates to change in CBF in the context of intensive versus standard antihypertensive treatment. Methods and Results In this post hoc analysis of the SPRINT MIND (Systolic Blood Pressure Intervention Trial-Memory and Cognition in Decreased Hypertension) trial, 289 participants (mean, 67.6 [7.6 SD] years, 38.8% women) underwent 4 blood pressure measurements over a 9-month period after treatment randomization (intensive versus standard) and pseudo-continuous arterial spin labeling magnetic resonance imaging at baseline and ≈4-year follow-up. BPV was calculated as tertiles of variability independent of mean. CBF was determined for whole brain, gray matter, white matter, hippocampus, parahippocampal gyrus, and entorhinal cortex. Linear mixed models examined relationships between BPV and change in CBF under intensive versus standard antihypertensive treatment. Higher BPV in the standard treatment group was associated with CBF decline in all regions (ß comparing the first versus third tertiles of BPV in whole brain: -0.09 [95% CI, -0.17 to -0.01]; P=0.03), especially in medial temporal regions. In the intensive treatment group, elevated BPV was related to CBF decline only in the hippocampus (ß, -0.10 [95% CI, -0.18, -0.01]; P=0.03). Conclusions Elevated BPV is associated with CBF decline, especially under standard blood pressure-lowering strategies. Relationships were particularly robust in medial temporal regions, consistent with prior work using observational cohorts. Findings highlight the possibility that BPV remains a risk for CBF decline even in individuals with strictly controlled mean blood pressure levels. Registration URL: http://clinicaltrials.gov. Identifier: NCT01206062.


Subject(s)
Antihypertensive Agents , Hypertension , Female , Humans , Male , Antihypertensive Agents/pharmacology , Blood Pressure/physiology , Brain/pathology , Cerebrovascular Circulation , Hypertension/diagnosis , Hypertension/drug therapy , Hypertension/pathology
11.
J Alzheimers Dis ; 93(3): 1041-1050, 2023.
Article in English | MEDLINE | ID: mdl-37154177

ABSTRACT

BACKGROUND: Depletion of blood-derived progenitor cells, including so called "early endothelial progenitor cells", has been observed in individuals with early stage Alzheimer's disease relative to matched older control subjects. These findings could implicate the loss of angiogenic support from hematopoietic progenitors or endothelial progenitors in cognitive dysfunction. OBJECTIVE: To investigate links between progenitor cell proliferation and mild levels of cognitive dysfunction. METHODS: We conducted in vitro studies of blood-derived progenitor cells using blood samples from sixty-five older adults who were free of stroke or dementia. Peripheral blood mononuclear cells from venous blood samples were cultured in CFU-Hill media and the number of colony forming units were counted after 5 days in vitro. Neuropsychological testing was administered to all participants. RESULTS: Fewer colony forming units were observed in samples from older adults with a Clinical Dementia Rating global score of 0.5 versus 0. Older adults whose samples developed fewer colony forming units exhibited worse performance on neuropsychological measures of memory, executive functioning, and language ability. CONCLUSION: These data suggest blood progenitors may represent a vascular resilience marker related to cognitive dysfunction in older adults.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Humans , Aged , Leukocytes, Mononuclear , Cognitive Dysfunction/psychology , Stem Cells , Alzheimer Disease/psychology , Cognition/physiology , Neuropsychological Tests
12.
Neurobiol Aging ; 128: 43-48, 2023 08.
Article in English | MEDLINE | ID: mdl-37156179

ABSTRACT

Dilation of perivascular spaces (PVS) in the brain may indicate poor fluid drainage due to the accumulation of perivascular cell debris, waste, and proteins, including amyloid-beta (Aß). No prior study has assessed whether plasma Aß levels are related to PVS in older adults without dementia. Independently living older adults (N = 56, mean age = 68.2 years; Standard deviation (SD) = 6.5; 30.4% male) free of dementia or clinical stroke were recruited from the community and underwent brain MRI and venipuncture. PVS were qualitatively scored and dichotomized to low PVS burden (scores 0-1,) or high PVS burden (score>1). Plasma was assayed using a Quanterix Simoa Kit to quantify Aß42 and Aß40 levels. A significant difference was observed in plasma Aß42/Aß40 ratio between low and high PVS burden, controlling for age (F[1, 53] = 5.59, p = 0.022, η2 = 0.10), with lower Aß42/Aß40 ratio in the high PVS burden group. Dilation of PVS is associated with a lower plasma Aß42/Aß40 ratio, which may indicate higher cortical amyloid deposition. Future longitudinal studies examining PVS changes, and the pathogenesis of AD are warranted.


Subject(s)
Alzheimer Disease , Male , Humans , Aged , Female , Amyloid beta-Peptides , Peptide Fragments , Brain , Biomarkers
13.
J Alzheimers Dis ; 93(2): 533-543, 2023.
Article in English | MEDLINE | ID: mdl-37066910

ABSTRACT

BACKGROUND: Blood pressure variability (BPV) is associated with cognitive decline and Alzheimer's disease (AD), but relationships with AD risk gene apolipoprotein (APOE) ɛ4 remain understudied. OBJECTIVE: Examined the longitudinal relationship between BPV and cognitive change in APOE ɛ4 carriers and APOE ɛ3 homozygotes. METHODS: 1,194 Alzheimer's Disease Neuroimaging Initiative participants (554 APOE ɛ4 carriers) underwent 3-4 blood pressure measurements between study baseline and 12-month follow-up. Visit-to-visit BPV was calculated as variability independent of mean over these 12 months. Participants subsequently underwent ≥1 neuropsychological exam at 12-month follow-up or later (up to 156 months later). Composite scores for the domains of memory, language, executive function, and visuospatial abilities were determined. Linear mixed models examined the 3-way interaction of BPV×APOE ɛ4 carrier status x time predicting change in composite scores. RESULTS: Higher systolic BPV predicted greater decline in memory (+1 SD increase of BPV: ß= -0.001, p < 0.001) and language (ß= -0.002, p < 0.0001) among APOE ɛ4 carriers, but not APOE ɛ3 homozygotes (memory: +1 SD increase of BPV: ß= 0.0001, p = 0.57; language: ß= 0.0001, p = 0.72). Systolic BPV was not significantly associated with change in executive function or visuospatial abilities in APOE ɛ4 carriers (ps = 0.08-0.16) or APOE ɛ3 homozygotes (ps = 0.48-0.12). CONCLUSION: Cognitive decline associated with high BPV may be specifically accelerated among APOE ɛ4 carriers.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Humans , Apolipoprotein E4/genetics , Homozygote , Alzheimer Disease/genetics , Alzheimer Disease/complications , Apolipoprotein E3/genetics , Blood Pressure/genetics , Cognitive Dysfunction/genetics , Cognitive Dysfunction/complications
14.
Am J Hypertens ; 36(3): 168-175, 2023 02 24.
Article in English | MEDLINE | ID: mdl-36448621

ABSTRACT

BACKGROUND: Blood pressure (BP) variability (BPV) is an emerging risk factor for cognitive impairment and dementia, but relationships with cognition in the context of antihypertensive strategies remain unclear. We examined whether visit-to-visit BPV relates to cognitive change based on antihypertensive treatment type. METHODS: In this post hoc analysis of the SPRINT MIND trial, 2,348 participants underwent 4 BP measurements over a 9-month period after treatment randomization (standard vs. intensive BP lowering) and ≥ 1 neuropsychological evaluation thereafter. BPV was calculated as tertiles of BP SD. Participants underwent cognitive testing at baseline and every 2 years during the planned 4-year follow-up. Cognitive composite scores were calculated for global cognition, memory, language, executive function, and processing speed. Linear mixed models investigated relationships between BPV, antihypertensive treatment group, and time on cognitive composite scores. RESULTS: Elevated BPV was associated with the fastest decline in processing speed (ß = -.07 [95% CI -.12, -.01]; P = 0.02) and executive function (ß = -.08 [95% CI -.16, -.006]; P = 0.03) in the standard treatment group only. BPV was not related to cognitive change in the intensive treatment group. Mean/minimum/maximum BP was not associated with cognitive composite scores over time in either antihypertensive treatment group. CONCLUSIONS: Elevated BPV remains a risk for cognitive decline despite strictly controlled BP levels, in the standard treatment group. Specific declines were observed in processing speed and executive function, domains often impacted by cerebrovascular disease and may underpin risk for dementia and cerebrovascular disease associated with BPV. Clinical trial information: ClinicalTrials.gov; NCT01206062.


Subject(s)
Cognitive Dysfunction , Dementia , Hypertension , Humans , Antihypertensive Agents/therapeutic use , Blood Pressure
15.
Am J Hypertens ; 36(1): 63-68, 2023 01 01.
Article in English | MEDLINE | ID: mdl-36149821

ABSTRACT

BACKGROUND: Elevated blood pressure (BP) variability is predictive of increased risk for stroke, cerebrovascular disease, and other vascular brain injuries, independent of traditionally studied average BP levels. However, no studies to date have evaluated whether BP variability is related to diminished cerebrovascular reactivity, which may represent an early marker of cerebrovascular dysfunction presaging vascular brain injury. METHODS: The present study investigated BP variability and cerebrovascular reactivity in a sample of 41 community-dwelling older adults (mean age 69.6 [SD 8.7] years) without a history of dementia or stroke. Short-term BP variability was determined from BP measurements collected continuously during a 5-minute resting period followed by cerebrovascular reactivity during 5-minute hypocapnia and hypercapnia challenge induced by visually guided breathing conditions. Cerebrovascular reactivity was quantified as percent change in cerebral perfusion by pseudo-continuous arterial spin labeling (pCASL)-MRI per unit change in end-tidal CO2. RESULTS: Elevated systolic BP variability was related to lower whole brain cerebrovascular reactivity during hypocapnia (ß = -0.43 [95% CI -0.73, -0.12]; P = 0.008; adjusted R2 =.11) and hypercapnia (ß = -0.42 [95% CI -0.77, -0.06]; P = 0.02; adjusted R2 = 0.19). CONCLUSIONS: Findings add to prior work linking BP variability and cerebrovascular disease burden and suggest BP variability may also be related to prodromal markers of cerebrovascular dysfunction and disease, with potential therapeutic implications.


Subject(s)
Cerebrovascular Disorders , Hypertension , Stroke , Humans , Aged , Hypercapnia , Hypocapnia , Blood Pressure/physiology , Cerebrovascular Circulation/physiology
16.
medRxiv ; 2023 Dec 14.
Article in English | MEDLINE | ID: mdl-38168394

ABSTRACT

Background: Increased blood pressure variability (BPV) is a risk factor for cerebral small vessel disease (CSVD) and neurodegeneration, independent of age and average blood pressure, particularly in apolipoprotein E4 (APOE4) carriers. However, it remains uncertain whether BPV elevation is a cause or a consequence of vascular brain injury, or to what degree injury to the central autonomic network (CAN) may contribute to BPV-associated risk in APOE4 carriers. Methods: Independently living older adults (n=70) with no history of stroke or dementia were recruited from the community and underwent 5 minutes of resting beat-to-beat blood pressure monitoring, genetic testing, and brain MRI. Resting BPV, APOE genotype, CSVD burden on brain MRI, and resting state CAN connectivity by fMRI were analyzed. Causal mediation and moderation analysis evaluated BPV and CAN effects on CSVD in APOE4 carriers (n=37) and non-carriers (n=33). Results: Higher BPV was associated with the presence and extent of CSVD in APOE4 carriers, but not non-carriers, independent of CAN connectivity (B= 18.92, P= .02), and CAN connectivity did not mediate the relationship between BPV and CSVD. In APOE4 carriers, CAN connectivity moderated the relationship between BPV and CSVD, whereby BPV effects on CSVD were greater in those with lower CAN connectivity (B= 36.43, P= .02). Conclusions: Older APOE4 carriers with higher beat-to-beat BPV exhibit more extensive CSVD, independent of average blood pressure, and the strength of CAN connectivity does not mediate these effects. Findings suggest increased BPV is more likely a cause, not a consequence, of CSVD. BPV is more strongly associated with CSVD in APOE4 carriers with lower rsCAN connectivity, suggesting CAN dysfunction and BPV elevation may have synergistic effects on CSVD. Further studies are warranted to understand the interplay between BPV and CAN function in APOE4 carriers.

17.
Neuroimage ; 264: 119746, 2022 12 01.
Article in English | MEDLINE | ID: mdl-36370956

ABSTRACT

BACKGROUND: Perivascular spaces on brain magnetic resonance imaging (MRI) may indicate poor fluid drainage in the brain and have been associated with numerous neurological conditions. Cerebrovascular reactivity (CVR) is a marker of cerebrovascular function and represents the ability of cerebral blood vessels to regulate cerebral blood flow in response to vasodilatory or vasoconstrictive stimuli. We aimed to examine whether pathological widening of the perivascular space in older adults may be associated with deficits in CVR. METHODS: Independently living older adults free of dementia or clinical stroke were recruited from the community and underwent brain MRI. Pseudo-continuous arterial spin labeling MRI quantified whole brain cerebral perfusion at rest and during CVR to hypercapnia and hypocapnia induced by visually guided breathing exercises. Perivascular spaces were visually scored using existing scales. RESULTS: Thirty-seven independently living older adults (mean age = 66.3 years; SD = 6.8; age range 55-84 years; 29.7% male) were included in the current analysis. Multiple linear regression analysis revealed a significant negative association between burden of perivascular spaces and global CVR to hypercapnia (B = -2.0, 95% CI (-3.6, -0.4), p = .015), adjusting for age and sex. Perivascular spaces were not related to CVR to hypocapnia. DISCUSSION: Perivascular spaces are associated with deficits in cerebrovascular vasodilatory response, but not vasoconstrictive response. Enlargement of perivascular spaces could contribute to, or be influenced by, deficits in CVR. Additional longitudinal studies are warranted to improve our understanding of the relationship between cerebrovascular function and perivascular space enlargement.


Subject(s)
Cerebrovascular Circulation , Hypercapnia , Humans , Male , Aged , Middle Aged , Aged, 80 and over , Female , Cerebrovascular Circulation/physiology , Hypercapnia/diagnostic imaging , Magnetic Resonance Imaging/methods , Brain , Vasodilation/physiology
18.
Sci Rep ; 12(1): 17197, 2022 10 13.
Article in English | MEDLINE | ID: mdl-36229634

ABSTRACT

Blood pressure variability is an emerging risk factor for Alzheimer's disease in older adults, independent of average blood pressure levels. Growing evidence suggests increased blood pressure variability is linked to Alzheimer's disease pathophysiology indexed by cerebrospinal fluid and positron emission tomography markers, but relationships with plasma Alzheimer's disease markers have not been investigated. In this cross-sectional study of 54 community-dwelling older adults (aged 55-88, mean age 69.9 [8.2 SD]), elevated blood pressure variability over 5 min was associated with lower levels of plasma Aß1-42 (standardized ß = - 0.36 [95% CI - 0.61, - 0.12]; p = 0.005; adjusted R2 = 0.28) and Aß1-42: Aß1-40 ratio (ß = - 0.49 [95% CI - 0.71, - 0.22]; p < 0.001; adjusted R2 = 0.28), and higher levels of total tau (ß = 0.27 [95% CI 0.01, 0.54]; p = 0.04; adjusted R2 = 0.19) and Ptau181:Aß1-42 ratio (ß = 0.26 [95% CI 0.02, 0.51]; p = 0.04; adjusted R2 = 0.22). Findings suggest higher blood pressure variability is linked to plasma biomarkers of increased Alzheimer's disease pathophysiology.


Subject(s)
Alzheimer Disease , Aged , Aged, 80 and over , Amyloid beta-Peptides/cerebrospinal fluid , Biomarkers , Blood Pressure , Cross-Sectional Studies , Humans , Middle Aged , Peptide Fragments/cerebrospinal fluid , Tomography, X-Ray Computed , tau Proteins/cerebrospinal fluid
19.
Cortex ; 154: 405-420, 2022 09.
Article in English | MEDLINE | ID: mdl-35930892

ABSTRACT

In frontotemporal dementia (FTD), left-lateralized atrophy patterns have been associated with elevations in certain positive emotions. Here, we investigated whether positive emotional reactivity was enhanced in semantic variant primary progressive aphasia (svPPA), an FTD syndrome that targets the left anterior temporal lobe. Sixty-one participants (16 people with svPPA, 24 people with behavioral variant FTD, and 21 healthy controls) viewed six 90-sec trials that were comprised of a series of photographs; each trial was designed to elicit a specific positive emotion, negative emotion, or no emotion. Participants rated their positive emotional experience after each trial, and their smiling behavior was coded with the Facial Action Coding System. Results indicated that positive emotional experience and smiling were elevated in svPPA in response to numerous affective and non-affective stimuli. Voxel-based morphometry analyses revealed that greater positive emotional experience and greater smiling in the patients were both associated with smaller gray matter volume in the left superior temporal gyrus (pFWE < .05), among other left-lateralized frontotemporal regions. Whereas enhanced positive emotional experience related to atrophy in middle superior temporal gyrus and structures that promote cognitive control and emotion regulation, heightened smiling related to atrophy in posterior superior temporal gyrus and structures that support motor control. Our results suggest positive emotional reactivity is elevated in svPPA and offer new evidence that atrophy in left-lateralized emotion-relevant systems relates to enhanced positive emotions in FTD.


Subject(s)
Frontotemporal Dementia , Pick Disease of the Brain , Atrophy , Emotions , Frontal Lobe , Humans , Magnetic Resonance Imaging
20.
Neuroimage Rep ; 2(1)2022 Mar.
Article in English | MEDLINE | ID: mdl-35784272

ABSTRACT

Blood pressure variability is an emerging risk factor for stroke, cognitive impairment, and dementia, possibly through links with cerebral hypoperfusion. Recent evidence suggests visit-to-visit (e.g., over months, years) blood pressure variability is related to cerebral perfusion decline in brain regions vulnerable to Alzheimer's disease. However, less is known about relationships between short-term (e.g., < 24 hours) blood pressure variability and regional cerebral perfusion, and whether these relationships may differ by age. We investigated short-term blood pressure variability and concurrent regional cerebral microvascular perfusion in a sample of community-dwelling older adults without history of dementia or stroke and healthy younger adults. Blood pressure was collected continuously during perfusion MRI. Cerebral blood flow was determined for several brain regions implicated in cerebrovascular dysfunction in Alzheimer's disease. Elevated systolic blood pressure variability was related to lower levels of concurrent cerebral perfusion in medial temporal regions: hippocampus (ß = -.60 [95% CI -.90, -.30]; p < .001), parahippocampal gyrus (ß = -.57 [95% CI -.89, -.25]; p = .001), entorhinal cortex (ß = -.42 [95% CI -.73, -.12]; p = .009), and perirhinal cortex (ß = -.37 [95% CI -.72, -.03]; p = .04), and not in other regions, and in older adults only. Findings suggest a possible age-related selective vulnerability of the medial temporal lobes to hypoperfusion in the context of short-term blood pressure fluctuations, independent of average blood pressure, white matter hyperintensities, and gray matter volume, which may underpin the increased risk for dementia associated with elevated BPV.

SELECTION OF CITATIONS
SEARCH DETAIL
...