Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
1.
Magn Reson Imaging ; 96: 27-37, 2023 02.
Article in English | MEDLINE | ID: mdl-36396004

ABSTRACT

Skeletal muscle perfusion and oxygenation are commonly evaluated using Doppler ultrasound and near-infrared spectroscopy (NIRS) techniques. However, a recently developed magnetic resonance imaging (MRI) sequence, termed PIVOT, permits the simultaneous collection of skeletal muscle perfusion and T2* (an index of skeletal muscle oxygenation). PURPOSE: To determine the level of agreement between PIVOT, Doppler ultrasound, and NIRS-based assessments of skeletal muscle perfusion and oxygenation. METHODS: Twelve healthy volunteers (8 females, 25 ± 3 years, 170 ± 11 cm, 71.5 ± 8.0 kg) performed six total reactive hyperemia protocols. During three of these reactive hyperemia protocols, Tissue Saturation Index (TSI) and oxygenated hemoglobin (O2Hb) were recorded from the medial gastrocnemius (MG) and tibialis anterior (TA), and blood flow velocity was recorded from the popliteal artery (BFvpop) via Doppler Ultrasound. The other three trials were performed inside the bore of a 3 T MRI scanner, and the PIVOT sequence was used to assess perfusion (PIVOTperf) and oxygenation (T2*) of the medial gastrocnemius and tibialis anterior muscles. Positive incremental areas under the curve (iAUC) and times to peak (TTP) were calculated for each variable, and the level of agreement between collection methods was evaluated via Bland-Altman analyses and Spearman's Rho correlation analyses. RESULTS: The only significant bivariate relationships observed were between the T2* vs. TSI iAUC and PIVOTperf vs. BFvpop values recorded from the MG. Significant mean differences were observed for all comparisons (all P ≤ 0.038), and significant proportional biases were observed for the PIVOTperf vs. tHb TTP (R2 = 0.848, P < 0.001) and T2* vs. TSI TTP comparisons in the TA (R2 = 0.488, P = 0.011), and the PIVOTperf vs. BFvpop iAUC (R2 = 0.477, P = 0.013) and time to peak (R2 = 0.851, P < 0.001) comparisons in the MG. CONCLUSIONS: Our findings suggest that the PIVOT technique has, at best, a moderate level of agreement with Doppler ultrasound and NIRS assessment methods and is subject to significant proportional bias. These findings do not challenge the accuracy of either measurement technique but instead reflect differences in the vascular compartments, sampling volumes, and parameters being evaluated.


Subject(s)
Hyperemia , Multiparametric Magnetic Resonance Imaging , Female , Humans , Spectroscopy, Near-Infrared , Oxygen , Perfusion , Ultrasonography, Doppler , Muscle, Skeletal/physiology
2.
Mov Disord ; 37(8): 1654-1662, 2022 08.
Article in English | MEDLINE | ID: mdl-35614551

ABSTRACT

BACKGROUND: Higher nigral iron has been reported in Parkinson's disease (PD). OBJECTIVE: The aim is to understand the dynamics of nigral iron accumulation in PD and its association with drug treatment. METHODS: Susceptibility magnetic resonance imaging data were obtained from 79 controls and 18 drug-naive (PDDN ) and 87 drug-treated (PDDT ) PD patients. Regional brain iron in basal ganglia and cerebellar structures was estimated using quantitative susceptibility mapping. Nigral iron was compared between PDDN and PDDT subgroups defined by disease duration (early [PDE, <2 years], middle [PDM, 2-6 years], and later [PDL, >6 years]). Associations with both disease duration and types of antiparkinson drugs were explored using regression analysis. RESULTS: Compared to controls, PDDN had lower iron in the substantia nigra (P = 0.018), caudate nucleus (P = 0.038), and globus pallidus (P = 0.01) but not in the putamen or red nucleus. In contrast, PDDT had higher iron in the nigra (P < 0.001) but not in other regions, compared to either controls or PDDN . Iron in the nigra increased with disease duration (PDE > PDDN [P = 0.001], PDM > PDE [P = 0.045]) except for PDM versus PDL (P = 0.226). Levodopa usage was associated with higher (P = 0.013) nigral iron, whereas lower nigral iron was correlated with selegiline usage (P = 0.030). CONCLUSION: Nigral iron is lower before the start of dopaminergic medication and then increases throughout the disease until it plateaus at late stages, suggesting increased iron may not be an etiological factor. Interestingly, PD medications may have differential associations with iron accumulation that need further investigation. © 2022 International Parkinson and Movement Disorder Society.


Subject(s)
Parkinson Disease , Globus Pallidus/pathology , Humans , Iron , Magnetic Resonance Imaging/methods , Parkinson Disease/drug therapy , Parkinson Disease/pathology , Substantia Nigra/diagnostic imaging , Substantia Nigra/pathology
3.
Magn Reson Med ; 86(6): 3292-3303, 2021 12.
Article in English | MEDLINE | ID: mdl-34272898

ABSTRACT

PURPOSE: Investigating the designs and effects of high dielectric constant (HDC) materials in the shape of a conformal helmet on the enhancement of RF field and reduction of specific absorption rate at 10.5 T for human brain studies. METHODS: A continuous and a segmented four-piece HDC helmet fit to a human head inside an eight-channel fractionated-dipole array were constructed and studied with a phantom and a human head model using computer electromagnetic simulations. The simulated transmit efficiency and receive sensitivity were experimentally validated using a phantom with identical electric properties and helmet-coil configurations of the computer model. The temporal and spatial distributions of displacement currents on the HDC helmets were analyzed. RESULTS: Using the continuous HDC helmet, simulation results in the human head model demonstrated an average transmit efficiency enhancement of 66%. A propagating displacement current was induced on the continuous helmet, leading to an inhomogeneous RF field enhancement in the brain. Using the segmented four-piece helmet design to reduce this effect, an average 55% and 57% enhancement in the transmit efficiency and SNR was achieved in human head, respectively, along with 8% and 28% reductions in average and maximum local specific absorption rate. CONCLUSION: The HDC helmets enhanced the transmit efficiency and SNR of the dipole array coil in the human head at 10.5 T. The segmentation of the helmet to disrupt the continuity of circumscribing displacement currents in the helmet produced a more uniform distribution of the transmit field and lower specific absorption rate in the human head compared with the continuous helmet design.


Subject(s)
Head Protective Devices , Magnetic Resonance Imaging , Brain/diagnostic imaging , Equipment Design , Humans , Phantoms, Imaging , Radio Waves
4.
Eur J Appl Physiol ; 121(9): 2595-2606, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34106324

ABSTRACT

PURPOSE: Although it is known that peripheral arterial disease (PAD) is associated with chronic myopathies, the acute muscular responses to exercise in this population are less clear. This study used diffusion tensor imaging (DTI) to compare acute exercise-related muscle damage between PAD patients and healthy controls. METHODS: Eight PAD patients and seven healthy controls performed graded plantar flexion in the bore of a 3T MRI scanner. Exercise began at 2 kg and increased by 2 kg every 2 min until failure, or completion of 10 min of exercise. DTI images were acquired from the lower leg pre- and post-exercise, and were analyzed for mean diffusivity, fractional anisotropy (FA), and eigenvalues 1-3 (λ1-3) of the medial gastrocnemius (MG) and tibialis anterior (TA). RESULTS: Results indicated a significant leg by time interaction for mean diffusivity, explained by a significantly greater increase in diffusivity of the MG in the most affected legs of PAD patients (11.1 × 10-4 ± 0.5 × 10-4 mm2/s vs. 12.7 × 10-4 ± 1.2 × 10-4 mm2/s at pre and post, respectively, P = 0.02) compared to healthy control subjects (10.8 × 10-4 ± 0.3 × 10-4 mm2/s vs. 11.2 × 10-4 ± 0.5 × 10-4 mm2/s at pre and post, respectively, P = 1.0). No significant differences were observed for the TA, or λ1-3 (all P ≥ 0.06). Moreover, no reciprocal changes were observed for FA in either group (all P ≥ 0.29). CONCLUSION: These data suggest that calf muscle diffusivity increases more in PAD patients compared to controls after exercise. These findings are consistent with the notion that acute exercise results in increased muscle damage in PAD.


Subject(s)
Muscle, Skeletal/diagnostic imaging , Muscle, Skeletal/pathology , Muscular Diseases/diagnostic imaging , Muscular Diseases/pathology , Peripheral Arterial Disease/diagnostic imaging , Peripheral Arterial Disease/pathology , Aged , Case-Control Studies , Female , Humans , Male , Middle Aged
5.
J Appl Physiol (1985) ; 130(1): 48-56, 2021 01 01.
Article in English | MEDLINE | ID: mdl-33211597

ABSTRACT

One in three Americans suffer from kidney diseases such as chronic kidney disease, and one of the etiologies is suggested to be long-term renal hypoxia. Interestingly, sympathetic nervous system activation evokes a renal vasoconstrictor effect that may limit oxygen delivery to the kidney. In this report, we sought to determine if sympathetic activation evoked by lower body negative pressure (LBNP) would decrease cortical and medullary oxygenation in humans. LBNP was activated in a graded fashion (LBNP; -10, -20, and -30 mmHg), as renal oxygenation was measured (T2*, blood oxygen level dependent, BOLD MRI; n = 8). At a separate time, renal blood flow velocity (RBV) to the kidney was measured (n = 13) as LBNP was instituted. LBNP significantly reduced RBV (P = 0.041) at -30 mmHg of LBNP (Δ-8.17 ± 3.75 cm/s). Moreover, both renal medullary and cortical T2* were reduced with the graded LBNP application (main effect for the level of LBNP P = 0.0008). During recovery, RBV rapidly returned to baseline, whereas medullary T2* remained depressed into the first minute of recovery. In conclusion, sympathetic activation reduces renal blood flow and leads to a significant decrease in oxygenation in the renal cortex and medulla.NEW & NOTEWORTHY In healthy young adults, increased sympathetic activation induced by lower body negative pressure, led to a decrease in renal cortical and medullary oxygenation measured by T2*, a noninvasive magnetic resonance derived index of deoxyhemoglobin levels. In this study, we observed a significant decrease in renal cortical and medullary oxygenation with LBNP as well as an increase in renal vasoconstriction. We speculate that sympathetic renal vasoconstriction led to a significant reduction in tissue oxygenation by limiting oxygen delivery to the renal medulla.


Subject(s)
Lower Body Negative Pressure , Renal Circulation , Humans , Kidney , Sympathetic Nervous System , Vasoconstriction , Young Adult
6.
Subst Abuse ; 14: 1178221820904140, 2020.
Article in English | MEDLINE | ID: mdl-32095075

ABSTRACT

BACKGROUND: Public health concerns over the addictive potential of electronic cigarettes (e-cigs) have heightened in recent years. Brain function during e-cig use could provide an objective measure of the addictive potential of new vaping products to facilitate research; however, there are limited methods for delivering e-cig aerosols during functional magnetic resonance imaging (fMRI). The current study describes the development and feasibility testing of a prototype to deliver up to four different e-cig aerosols during fMRI. METHODS: Standardized methods were used to test the devices' air flow variability, nicotine yield, and free radical production. MRI scans were run with and without the device present to assess its safety and effects on MRI data quality. Five daily smokers were recruited to assess plasma nicotine absorption from e-liquids containing nicotine concentrations of 8, 11, 16, 24, and 36 mg/ml. Feedback was collected from participants through a semi-structured interview and computerized questionnaire to assess comfort and subjective experiences of inhaling aerosol from the device. RESULTS: Nicotine yield captured from the aerosol produced by the device was highly correlated with the nicotine concentration of the e-liquids used (R2 = 0.965). Nicotine yield was reduced by a mean of 48% and free radical production by 17% after traveling through the device. The e-liquid containing the highest nicotine concentration tested (36 mg/ml) resulted in the highest plasma nicotine boost (6.6 ng/ml). Overall, participants reported that the device was comfortable to use and inhaling the e-cig aerosols was tolerable. The device was determined to be safe for use during fMRI and had insignificant effects on scan quality. CONCLUSIONS: With the current project, we were able to design a working prototype that safely and effectively delivers e-cig aerosols during fMRI. The device has the potential to be used to assess brain activation during e-cig use and to compare brain reactivity to varying flavors, nicotine concentrations, and other e-cig characteristics.

7.
Magn Reson Med ; 83(3): 1123-1134, 2020 03.
Article in English | MEDLINE | ID: mdl-31502708

ABSTRACT

PURPOSE: To present a 3T brain imaging study using a conformal prototype helmet constructed with an ultra-high dielectric constant (uHDC; εr ~ 1000) materials that can be inserted into standard receive head-coils. METHODS: A helmet conformal to a standard human head constructed with uHDC materials was characterized through electromagnetic simulations and experimental work. The signal-to-noise ratio (SNR), transmit efficiency, and power deposition with the uHDC helmet inserted within a 20-channel head coil were measured in vivo and compared with a 64-channel head coil and the 20-channel coil without the helmet. Seven healthy volunteers were analyzed. RESULTS: Simulation and in vivo experimental results showed that transmit efficiency was improved by nearly 3 times within localized regions for a quadrature excitation, with a measured global increase of 58.21 ± 6.54% over 7 volunteers. The use of a parallel transmit spokes pulse compensated for severe degradation of B1+ homogeneity, at the expense of higher global and local specific absorption rate levels. A SNR histogram analysis with statistical testing demonstrated that the uHDC helmet enhanced a 20-channel head coil to the level of the 64-channel head coil, with the improvements mainly within the cortical brain regions. CONCLUSION: A prototype uHDC helmet enhanced the SNR of a standard head coil to the level of a high density 64-channel coil, although transmit homogeneity was compromised. Further improvements in SNR may be achievable with optimization of this technology, and could be a low-cost approach for future radiofrequency engineering work in the brain at 3T.


Subject(s)
Brain/diagnostic imaging , Cerebral Cortex/diagnostic imaging , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging , Patient Positioning/instrumentation , Phantoms, Imaging , Algorithms , Brain Mapping , Computer Simulation , Electromagnetic Radiation , Female , Healthy Volunteers , Humans , Neuroimaging , Patient Positioning/methods , Radio Waves , Reproducibility of Results , Signal-To-Noise Ratio
8.
Physiol Rep ; 7(20): e14243, 2019 10.
Article in English | MEDLINE | ID: mdl-31637857

ABSTRACT

It is unclear if the exaggerated exercise pressor reflex observed in peripheral arterial disease (PAD) patients facilitates Oxygen (O2 ) transport during presymptomatic exercise. Accordingly, this study compared O2 transport between PAD patients and healthy controls during graded presymptomatic work. Seven PAD patients and seven healthy controls performed dynamic plantar flexion in the bore of a 3T MRI scanner. Perfusion, T2 * (an index of relative tissue oxygenation), and SvO2 (a measure of venous oxygen saturation) were collected from the medial gastrocnemius (MG) during the final 10 seconds of each stage. Blood pressure was also collected during the final minute of each stage. As expected, the pressor response to presymptomatic work (4 kg) was exaggerated in PAD patients compared to controls (+14 mmHg ± 4 and +7 mmHg ± 2, P ≤ 0.034). When normalized to changes in free water content (S0 ), T2 * was lower at 2 kg in PAD patients compared to controls (-0.91 Δms/ΔAU ± 0.3 and 0.57 Δms/ΔAU ± 0.3, P ≤ 0.008); followed by a greater increase in perfusion at 4 kg in the PAD group (+18.8 mL/min/100g ± 6.2 vs. -0.21 mL/min/100g ± 3.2 in PAD and controls, P ≤ 0.026). Lastly, SvO2 decreased at 4 kg in both groups (-13% ± 4 and -2% ± 4 in PAD and controls, P ≤ 0.049), suggesting an increase in O2 extraction in the PAD group. Based on these findings, O2 transport appears to be augmented during graded presymptomatic work in PAD patients, and this may be partially mediated by an exaggerated pressor response.


Subject(s)
Blood Pressure/physiology , Exercise/physiology , Muscle, Skeletal/physiology , Oxygen Consumption/physiology , Peripheral Arterial Disease/physiopathology , Reflex/physiology , Aged , Female , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Muscle, Skeletal/diagnostic imaging , Oxygen/blood , Regional Blood Flow/physiology
9.
Ann Neurol ; 85(1): 96-104, 2019 01.
Article in English | MEDLINE | ID: mdl-30408230

ABSTRACT

OBJECTIVE: Newer magnetic resonance imaging (MRI) techniques have shown promise in capturing early Parkinson disease (PD)-related changes in the substantia nigra pars compacta (SNc), the key pathological loci. Their translational value, however, is hindered by technical complexity and inconsistent results. METHODS: A novel yet simple MRI contrast, the T1w/T2w ratio, was used to study 76 PD patients and 70 controls. The T1w/T2w ratio maps were analyzed using both voxel-based and region-of-interest approaches in normalized space. The sensitivity and specificity of the SNc T1w/T2w ratio in discriminating between PD and controls also were assessed. In addition, its diagnostic performance was tested in a subgroup of PD patients with disease duration ≤2 years (PDE). A second independent cohort of 73 PD patients and 49 controls was used for validation. RESULTS: Compared to controls, PD patients showed a higher T1w/T2w ratio in both the right (cluster size = 164mm3 , p < 0.0001) and left (cluster size = 213mm3 , p < 0.0001) midbrain that was located ventrolateral to the red nucleus and corresponded to the SNc. The region-of-interest approach confirmed the group difference in the SNc T1w/T2w ratio between PD and controls (p < 0.0001). The SNc T1w/T2w ratio had high sensitivity (0.908) and specificity (0.80) to separate PD and controls (area under the curve [AUC] = 0.926), even for PDE patients (AUC = 0.901, sensitivity = 0.857, specificity = 0.857). These results were validated in the second cohort. INTERPRETATION: The T1w/T2w ratio can detect PD-related changes in the SNc and may be used as a novel, parsimonious in vivo biomarker for the disease, particularly for early stage patients, with high translational value for clinical practice and research. ANN NEUROL 2019;85:96-104.


Subject(s)
Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Parkinson Disease/diagnostic imaging , Aged , Aged, 80 and over , Cohort Studies , Female , Humans , Male , Middle Aged
10.
Mov Disord ; 33(9): 1432-1439, 2018 09.
Article in English | MEDLINE | ID: mdl-29756231

ABSTRACT

BACKGROUND: Parkinsonisms are neurodegenerative disorders characterized pathologically by α-synuclein-positive (e.g., PD, diffuse Lewy body disease, and MSA) and/or tau-positive (e.g., PSP, cortical basal degeneration) pathology. Using R2* and quantitative susceptibility mapping, susceptibility changes have been reported in the midbrain of living parkinsonian patients, although the exact underlying pathology of these alterations is unknown. OBJECTIVE: The current study investigated the pathological correlates of these susceptibility MRI measures. METHODS: In vivo MRIs (T1- and T2-weighted, and T2*) and pathology were obtained from 14 subjects enrolled in an NINDS PD Biomarker Program (PDBP). We assessed R2* and quantitative susceptibility mapping values in the SN, semiquantitative α-synuclein, tau, and iron values, as well as neuronal and glial counts. Data were analyzed using age-adjusted Spearman correlations. RESULTS: R2* was associated significantly with nigral α-synuclein (r = 0.746; P = 0.003). Quantitative susceptibility mapping correlated significantly with Perls' (r = 0.758; P = 0.003), but not with other pathological measurements. Neither measurement correlated with tau or glial cell counts (r ≤ 0.11; P ≥ 0.129). CONCLUSIONS: Susceptibility MRI measurements capture nigral pathologies associated with parkinsonian syndromes. Whereas quantitative susceptibility mapping is more sensitive to iron, R2* may reflect pathological aspects of the disorders beyond iron such as α-synuclein. They may be invaluable tools in diagnosing differential parkinsonian syndromes, and tracking in living patients the dynamic changes associated with the pathological progression of these disorders. © 2018 International Parkinson and Movement Disorder Society.


Subject(s)
Magnetic Resonance Imaging , Parkinsonian Disorders/diagnostic imaging , Substantia Nigra/diagnostic imaging , Aged , Aged, 80 and over , Brain Mapping , Correlation of Data , Disease Progression , Female , Humans , Imaging, Three-Dimensional , Male , Middle Aged , Substantia Nigra/metabolism , alpha-Synuclein/metabolism , tau Proteins/metabolism
11.
Mov Disord ; 33(9): 1423-1431, 2018 09.
Article in English | MEDLINE | ID: mdl-29756399

ABSTRACT

BACKGROUND: Susceptibility MRI may capture Parkinson's disease-related pathology. This study delineated longitudinal changes in different substantia nigra regions. METHODS: Seventy-two PD patients and 62 controls were studied at both baseline and after 18 months with MRI. R2* and quantitative susceptibility mapping values from the substantia nigra pars compacta and substantia nigra pars reticulata were calculated. Mixed-effects models compared controls with PD or PD subgroups having different disease durations: early (<1 year), middle (<5 years, middle-stage PD), and late (>5 years, late-stage PD). Pearson's correlation assessed associations between imaging and clinical measures. RESULTS: At baseline, R2* and quantitative susceptibility mapping were higher in both the substantia nigra pars compacta and substantia nigra pars reticulata in all PD patients (group effect, P ≤ 0.003). Longitudinally, the substantia nigra pars compacta R2* showed a faster increase in PD compared with controls (time × group, P = 0.002), whereas quantitative susceptibility mapping did not (P = 0.668). The substantia nigra pars reticulata R2* and quantitative susceptibility mapping did not differ between PD and controls (time × group, P ≥ 0.084), although both decreased longitudinally (time effect, P ≤ 0.004). Baseline substantia nigra pars compacta R2* was higher in all PD subgroups (group, P ≤ 0.006), but showed a significantly faster increase only in later-stage PD (time × group, P < 0.0001) that correlated with changes in nonmotor symptoms (r = 0.746, P = 0.002). Baseline substantia nigra pars reticulata quantitative susceptibility mapping was higher in middle-stage PD and later-stage PD (group, P ≤ 0.002), but showed a longitudinal decrease (time × group, P = 0.004) only in later-stage PD that correlated with changes in motor signs (r = 0.837, P < 0.001). CONCLUSION: Susceptibility MRI revealed distinct patterns of PD progression in the substantia nigra pars compacta and substantia nigra pars reticulata. The different patterns are particularly clear in later-stage patients. These findings may resolve past controversies and have implications in the pathophysiological processes during PD progression. © 2018 International Parkinson and Movement Disorder Society.


Subject(s)
Magnetic Resonance Imaging , Parkinson Disease/diagnostic imaging , Substantia Nigra/diagnostic imaging , Aged , Correlation of Data , Disease Progression , Female , Humans , Image Processing, Computer-Assisted , Longitudinal Studies , Male , Middle Aged
12.
Magn Reson Med ; 79(5): 2842-2851, 2018 05.
Article in English | MEDLINE | ID: mdl-28948637

ABSTRACT

PURPOSE: Incorporating high dielectric constant (HDC) materials into radiofrequency (RF) coils has been shown to effectively improve RF coil performance at 7 and 3 T because of the induced displacement current in the high dielectric constant materials. The displacement current is proportional to the RF field frequency and permittivity of the material. The aim of this paper is to investigate the effect of high dielectric constant materials with even greater permittivity on the RF field at 1.5 T and 3 T. METHODS: Several monolithic ceramic materials with an ultrahigh dielectric constant ranging from 1200 to 3300 were investigated at 1.5 T and 3 T with phantom and human brain imaging along with computer modeling. RESULTS: Experimental measurements in phantom studies showed a significant enhancement of signal-to-noise ratio (50-100%) and strong transmission power reduction (3-27-fold). Under suboptimal experimental conditions in this study, the signal-to-noise ratio in the human brain cortex was nearly doubled, which produced high-resolution image without the associated stronger magnetic susceptibility artifacts and elevated specific absorption rate concerns at higher field strengths. CONCLUSIONS: Use of ultrahigh dielectric constant ceramic materials is a simple and low-cost approach that could further improve the RF technology to maximize image signal-to-noise ratio and reduce RF energy deposition for human studies. Magn Reson Med 79:2842-2851, 2018. © 2017 International Society for Magnetic Resonance in Medicine.


Subject(s)
Ceramics/chemistry , Magnetic Resonance Imaging/instrumentation , Magnetic Resonance Imaging/methods , Brain/diagnostic imaging , Equipment Design , Humans , Male , Phantoms, Imaging , Signal-To-Noise Ratio
13.
J Magn Reson Imaging ; 46(1): 40-48, 2017 07.
Article in English | MEDLINE | ID: mdl-27783446

ABSTRACT

PURPOSE: To evaluate the dynamic characteristics of T2* -weighted signal change in exercising skeletal muscle of healthy subjects and peripheral artery disease (PAD) patients under a low-intensity exercise paradigm. MATERIALS AND METHODS: Nine PAD patients and nine age- and sex-matched healthy volunteers underwent a low-intensity exercise paradigm while magnetic resonance imaging (MRI) (3.0T) was obtained. T2*-weighted signal time-courses in lateral gastrocnemius, medial gastrocnemius, soleus, and tibialis anterior were acquired and analyzed. Correlations were performed between dynamic T2*-weighted signal and changes in heart rate, mean arterial pressure, leg pain, and perceived exertion. RESULTS: A significant signal decrease was observed during exercise in soleus and tibialis anterior of healthy participants (P = 0.0007-0.04 and 0.001-0.009, respectively). In PAD, negative signals were observed (P = 0.008-0.02 and 0.003-0.01, respectively) in soleus and lateral gastrocnemius during the early exercise stage. Then the signal gradually increased above the baseline in the lateral gastrocnemius during and after exercise in six of the eight patients who completed the study. This signal increase in patients' lateral gastrocnemius was significantly greater than in healthy subjects' during the later exercise stage (two-sample t-tests, P = 0.001-0.03). Heart rate and mean arterial pressure responses to exercise were significantly higher in PAD than healthy subjects (P = 0.036 and 0.008, respectively) and the patients experienced greater leg pain and exertion (P = 0.006 and P = 0.0014, respectively). CONCLUSION: During low-intensity exercise, there were different dynamic T2*-weighted signal behavior in the healthy and PAD exercising muscles. LEVEL OF EVIDENCE: 2 Technical Efficacy: Stage 1 J. MAGN. RESON. IMAGING 2017;46:40-48.


Subject(s)
Diffusion Magnetic Resonance Imaging/methods , Exercise Test/methods , Magnetic Resonance Angiography/methods , Muscle, Skeletal/blood supply , Muscle, Skeletal/diagnostic imaging , Peripheral Arterial Disease/diagnostic imaging , Aged , Female , Humans , Leg/diagnostic imaging , Male , Middle Aged , Muscle, Skeletal/pathology , Peripheral Arterial Disease/pathology , Physical Exertion , Reproducibility of Results , Sensitivity and Specificity
14.
Physiol Rep ; 4(20)2016 10.
Article in English | MEDLINE | ID: mdl-27798357

ABSTRACT

Blood-oxygen-level-dependent magnetic resonance imaging (BOLD MRI) has the potential to quantify skeletal muscle oxygenation with high temporal and high spatial resolution. The purpose of this study was to characterize skeletal muscle BOLD responses during steady-state plantar flexion exercise (i.e., during the brief rest periods between muscle contraction). We used three different imaging modalities (ultrasound of the popliteal artery, BOLD MRI, and near-infrared spectroscopy [NIRS]) and two different exercise intensities (2 and 6 kg). Six healthy men underwent three separate protocols of dynamic plantar flexion exercise on separate days and acute physiological responses were measured. Ultrasound studies showed the percent change in popliteal velocity from baseline to the end of exercise was 151 ± 24% during 2 kg and 589 ± 145% during 6 kg. MRI studies showed an abrupt decrease in BOLD signal intensity at the onset of 2 kg exercise, indicating deoxygenation. The BOLD signal was further reduced during 6 kg exercise (compared to 2 kg) at 1 min (-4.3 ± 0.7 vs. -1.2 ± 0.4%, P < 0.001). Similarly, the change in the NIRS muscle oxygen saturation in the medial gastrocnemius was -11 ± 4% at 2 kg and -38 ± 11% with 6 kg (P = 0.041). In conclusion, we demonstrate that BOLD signal intensity decreases during plantar flexion and this effect is augmented at higher exercise workloads.


Subject(s)
Magnetic Resonance Imaging/methods , Muscle Contraction/physiology , Muscle, Skeletal/metabolism , Oxygen Consumption/physiology , Popliteal Artery/diagnostic imaging , Adult , Exercise/physiology , Humans , Male , Middle Aged , Spectroscopy, Near-Infrared/methods , Ultrasonography/methods , Young Adult
15.
Magn Reson Med ; 73(4): 1420-31, 2015 Apr.
Article in English | MEDLINE | ID: mdl-24753099

ABSTRACT

PURPOSE: Introduce a novel compressed sensing reconstruction method to accelerate proton resonance frequency shift temperature imaging for MRI-induced radiofrequency heating evaluation. METHODS: A compressed sensing approach that exploits sparsity of the complex difference between postheating and baseline images is proposed to accelerate proton resonance frequency temperature mapping. The method exploits the intra-image and inter-image correlations to promote sparsity and remove shared aliasing artifacts. Validations were performed on simulations and retrospectively undersampled data acquired in ex vivo and in vivo studies by comparing performance with previously published techniques. RESULTS: The proposed complex difference constrained compressed sensing reconstruction method improved the reconstruction of smooth and local proton resonance frequency temperature change images compared to various available reconstruction methods in a simulation study, a retrospective study with heating of a human forearm in vivo, and a retrospective study with heating of a sample of beef ex vivo. CONCLUSION: Complex difference based compressed sensing with utilization of a fully sampled baseline image improves the reconstruction accuracy for accelerated proton resonance frequency thermometry. It can be used to improve the volumetric coverage and temporal resolution in evaluation of radiofrequency heating due to MRI, and may help facilitate and validate temperature-based methods for safety assurance.


Subject(s)
Body Temperature/physiology , Data Compression/methods , Forearm/physiology , Image Interpretation, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Thermography/methods , Algorithms , Body Temperature/radiation effects , Computer Simulation , Forearm/radiation effects , Humans , Image Enhancement/methods , Magnetic Fields , Models, Biological , Reproducibility of Results , Sensitivity and Specificity
16.
Magn Reson Med ; 71(5): 1923-31, 2014 May.
Article in English | MEDLINE | ID: mdl-23804188

ABSTRACT

PURPOSE: To compare numerically simulated and experimentally measured temperature increase due to specific energy absorption rate from radiofrequency fields. METHODS: Temperature increase induced in both a phantom and in the human forearm when driving an adjacent circular surface coil was mapped using the proton resonance frequency shift technique of magnetic resonance thermography. The phantom and forearm were also modeled from magnetic resonance image data, and both specific energy absorption rate and temperature change as induced by the same coil were simulated numerically. RESULTS: The simulated and measured temperature increase distributions were generally in good agreement for the phantom. The relative distributions for the human forearm were very similar, with the simulations giving maximum temperature increase about 25% higher than measured. CONCLUSION: Although a number of parameters and uncertainties are involved, it should be possible to use numerical simulations to produce reasonably accurate and conservative estimates of temperature distribution to ensure safety in magnetic resonance imaging. R01 EB006563


Subject(s)
Absorption, Radiation , Body Temperature/physiology , Forearm/physiology , Magnetic Fields , Magnetic Resonance Imaging/methods , Models, Biological , Body Temperature/radiation effects , Computer Simulation , Forearm/radiation effects , Humans , Temperature , Thermography/methods
17.
Magn Reson Med ; 72(1): 237-47, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24006153

ABSTRACT

PURPOSE: To describe and introduce new software capable of accurately simulating MR signal, noise, and specific absorption rate (SAR) given arbitrary sample, sequence, static magnetic field distribution, and radiofrequency magnetic and electric field distributions for each transmit and receive coil. THEORY AND METHODS: Using fundamental equations for nuclear precession and relaxation, signal reception, noise reception, and calculation of SAR, a versatile MR simulator was developed. The resulting simulator was tested with simulation of a variety of sequences demonstrating several common imaging contrast types and artifacts. The simulation of intravoxel dephasing and rephasing with both tracking of the first order derivatives of each magnetization vector and multiple magnetization vectors was examined to ensure adequate representation of the MR signal. A quantitative comparison of simulated and experimentally measured SNR was also performed. RESULTS: The simulator showed good agreement with our expectations, theory, and experiment. CONCLUSION: With careful design, an MR simulator producing realistic signal, noise, and SAR for arbitrary sample, sequence, and fields has been created. It is hoped that this tool will be valuable in a wide variety of applications.


Subject(s)
Magnetic Resonance Imaging/methods , Software , Artifacts , Computer Simulation , Electromagnetic Fields , Head , Humans , Magnetic Resonance Imaging/instrumentation , Phantoms, Imaging , Signal-To-Noise Ratio
18.
Magn Reson Med ; 70(5): 1369-79, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23280884

ABSTRACT

PURPOSE: To develop and evaluate variable-density spiral first-pass perfusion pulse sequences for improved efficiency and off-resonance performance and to demonstrate the utility of an apodizing density compensation function (DCF) to improve signal-to-noise ratio (SNR) and reduce dark-rim artifact caused by cardiac motion and Gibbs Ringing. METHODS: Three variable density spiral trajectories were designed, simulated, and evaluated in 18 normal subjects, and in eight patients with cardiac pathology on a 1.5T scanner. RESULTS: By using a DCF, which intentionally apodizes the k-space data, the sidelobe amplitude of the theoretical point spread function (PSF) is reduced by 68%, with only a 13% increase in the full-width at half-maximum of the main-lobe when compared with the same data corrected with a conventional variable-density DCF, and has an 8% higher resolution than a uniform density spiral with the same number of interleaves and readout duration. Furthermore, this strategy results in a greater than 60% increase in measured SNR when compared with the same variable-density spiral data corrected with a conventional DCF (P < 0.01). Perfusion defects could be clearly visualized with minimal off-resonance and dark-rim artifacts. CONCLUSION: Variable-density spiral pulse sequences using an apodized DCF produce high-quality first-pass perfusion images with minimal dark-rim and off-resonance artifacts, high SNR and contrast-to-noise ratio, and good delineation of resting perfusion abnormalities.


Subject(s)
Algorithms , Image Enhancement/methods , Image Interpretation, Computer-Assisted/methods , Magnetic Resonance Angiography/methods , Myocardial Infarction/pathology , Myocardial Perfusion Imaging/methods , Humans , Sensitivity and Specificity
19.
J Magn Reson Imaging ; 38(2): 435-40, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23293090

ABSTRACT

PURPOSE: To investigate the use of a new high-dielectric constant (HDC) material for improving SNR and transmission efficiency for clinical MRI applications at 3 Tesla (T) with cervical spine imaging. MATERIALS AND METHODS: Human subjects were imaged using a commercial cervical spine receive array coil on a clinical system with and without pads containing Barium Titanate beads in deuterium water placed around the neck. Numerical electromagnetic field simulations of the same configuration were also performed. RESULTS: Experimental and simulated maps of transmit and receive fields showed greater efficiency for imaging the cervical spine when the pads were present. Experimental measurements showed a significant improvement in SNR with the pads present and an average input power reduction of 46%. CONCLUSION: Use of HDC material can enhance SNR and transmission efficiency for clinical imaging of the cervical spine at 3.0T.


Subject(s)
Cervical Vertebrae/anatomy & histology , Image Enhancement/instrumentation , Magnetic Resonance Imaging/instrumentation , Magnetics/instrumentation , Transducers , Equipment Design , Equipment Failure Analysis , Humans , Radio Waves , Reproducibility of Results , Sensitivity and Specificity
20.
Magn Reson Med ; 70(1): 269-75, 2013 Jul.
Article in English | MEDLINE | ID: mdl-22890908

ABSTRACT

Passive dielectric materials have been used to improve aspects of MRI by affecting the distribution of radiofrequency electromagnetic fields. Recently, interest in such materials has increased with the number of high-field MRI sites. Here, we introduce a new material composed of sintered high-permittivity ceramic beads in deuterated water. This arrangement maintains the ability to create flexible pads for conforming to individual subjects. The properties of the material are measured and the performance of the material is compared to previously used materials in both simulation and experiment at 3 T. Results show that both permittivity of the beads and effect on signal-to-noise ratio and required transmit power in MRI are greater than those of materials consisting of ceramic powder in water. Importantly, use of beads results in both higher permittivity and lower conductivity than use of powder.


Subject(s)
Ceramics/chemistry , Ceramics/radiation effects , Magnetic Resonance Imaging/instrumentation , Patient Positioning/instrumentation , Computer Simulation , Electric Conductivity , Equipment Design , Equipment Failure Analysis , Humans , Materials Testing , Models, Chemical , Phantoms, Imaging
SELECTION OF CITATIONS
SEARCH DETAIL
...