Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Food Chem ; 451: 139409, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38692236

ABSTRACT

Herein, nineteen buckwheat honey samples collected from 19 stations of different ecological zones of Kazakhstan were analysed for their pollen density, physicochemical properties, chemical composition, antioxidant, anticholinesterase, tyrosinase inhibitory, and urease inhibitory activities with chemometric approaches. Twelve phenolic compounds and fumaric acid were identified using HPLC-DAD, and mainly fumaric, p-hydroxybenzoic, p-coumaric, trans-2-hydroxy cinnamic acids, and chrysin were detected in all samples. The honey samples collected from the Northern zone exhibited best antioxidant activity in lipid peroxidation inhibitory (IC50:8.65 ± 0.50 mg/mL), DPPH• (IC50:17.07 ± 1.49 mg/mL), ABTS•+ (IC50:8.90 ± 0.65 mg/mL), CUPRAC (A0.50:7.51 ± 0.30 mg/mL) and metal chelating assay (IC50:10.39 ± 0.71 mg/mL). In contrast, South-eastern zone samples indicated better acetylcholinesterase (55.57 ± 0.83%), butyrylcholinesterase (49.59 ± 1.09%), tyrosinase (44.40 ± 1.21%), and moderate urease (24.57 ± 0.33%) inhibitory activities at 20 mg/mL. The chemometric classification of nineteen buckwheat honey was performed using PCA and HCA techniques. Both were supported by correlation analysis. Thirteen compounds contributed significantly to the clustering of buckwheat honey based on geographical origin.


Subject(s)
Antioxidants , Fagopyrum , Honey , Honey/analysis , Honey/classification , Fagopyrum/chemistry , Fagopyrum/classification , Antioxidants/chemistry , Antioxidants/analysis , Kazakhstan , Monophenol Monooxygenase/antagonists & inhibitors , Chemometrics , Phenols/analysis , Phenols/chemistry , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/analysis
2.
ACS Omega ; 8(41): 38641-38657, 2023 Oct 17.
Article in English | MEDLINE | ID: mdl-37867693

ABSTRACT

This study is aimed to synthesize morpholine- and thiazolidine-based novel 5-(substituted)benzylidene)-2-(morpholinoimino)-3-phenylthiazolidin-4-ones (3-26) and characterized by molecular spectroscopy. The synthesized compounds were subjected to antioxidant activity with anticholinesterase, tyrosinase, and urease inhibition activities and evaluated the structure-activity relationship (SAR) of enzyme inhibition activities. Compound 11 was found to be the most active antioxidant. In anticholinesterase inhibition, compound 12 (IC50: 17.41 ± 0.22 µM) was the most active against AChE, while compounds 3-26 ( except 3, 8, and 17) showed notable activity against BChE. Compounds 17 (IC50: 3.22 ± 0.70 mM), 15 (IC50: 5.19 ± 0.03 mM), 24 (IC50: 7.21 ± 0.27 mM), 23 (IC50: 8.05 ± 0.11 mM), 14 (IC50: 8.10 ± 0.22 mM), 25 (IC50: 8.40 ± 0.64 mM), 26 (IC50: 8.76 ± 0.90 mM), and 22 (IC50: 9.13 ± 0.55 mM) produced higher tyrosinase inhibition activity. In urease inhibition activity, compounds 20 (IC50: 16.79 ± 0.19 µM), 19 (IC50: 18.25 ± 0.50 µM), 18 (IC50: 20.24 ± 0.77 µM), 26 (IC50: 21.51 ± 0.44 µM), 25 (IC50: 21.70 ± 0.06 µM), and 24 (IC50: 22.49 ± 0.11 µM) demonstrated excellent activities. Besides, the molecular docking study was applied to better understand the inhibitory mechanism between (1-26) compounds and enzymes at the molecular level. According to the results of this study, the synthesized compounds exhibited a better binding affinity toward these enzymes compared to the positive control. Further, molecular mechanics Poisson-Boltzmann surface area (MM/PBSA) binding free energy and molecular dynamics (MD) simulation analyses were performed for AChE with compound 26, which showed high inhibitory activity in silico and in vitro studies. In conclusion, novel morpholine and thiazolidine-based derivative compounds may be pharmacologically effective agents for AChE, BChE, tyrosinase, and urease enzymes.

3.
Chem Biodivers ; 20(8): e202300626, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37477542

ABSTRACT

In this study, new chiral thiourea and 1,3-thiazolidine-4,5-dione derivatives were synthesized, it was aimed to evaluate the various biological activities and molecular docking of these compounds. Firstly, the new thioureas (1-16) were obtained by reacting 1-naphthylisothiocyanate with different chiral amines. Then, the chiral thioureas were cyclized with oxalyl chloride to obtain 1,3-thiazolidine-4,5-dione derivatives (17-32). All compounds were evaluated with several in vitro antioxidant and enzyme inhibition activities. Compound 30 was the most active compound against AChE, with a value of IC50 =8.09±0.58 µM. On the other hand, all compounds were tested in silico absorption, distribution, metabolism, and excretion (ADME) assays to better understand their bioavailability. These physicochemical properties, pharmacokinetics, and drug-likeness of all compounds were calculated using SwissADME. Furthermore, according to molecular docking analyses compound 30 exhibited significant binding affinities for all enzymes. Based on our overall observations, compound 30 could be recommended as a potential lead for the therapuetic of Alzheimer's.


Subject(s)
Antioxidants , Thiourea , Molecular Structure , Molecular Docking Simulation , Thiazolidines/pharmacology , Thiourea/pharmacology , Thiourea/chemistry , Antioxidants/pharmacology , Antioxidants/chemistry , Structure-Activity Relationship
4.
J Mol Recognit ; 36(7): e3020, 2023 07.
Article in English | MEDLINE | ID: mdl-37092742

ABSTRACT

In this work, a series of chalcones (1a-d, 2a-d, 3a-d, 4a-d, and 5a-d) were designed and synthesized by Claisen-Schmidt condensation. Also, their chemical structures were elucidated using UV-Vis, FT IR, 1 H NMR, 13 C NMR, MS spectral data, and elemental analyses. Subsequently, the anticholinesterase, tyrosinase, urease inhibitory activities and antioxidant activities of all chalcones were evaluated. The inhibitory potential of all chalcones in terms of IC50 value was observed to range from 7.18 ± 0.43 to 29.62 ± 0.30 µM against BChE by comparing with Galantamine (IC50 46.06 ± 0.10 µM) as a reference drug. Also, compounds 2c, 3c, 4c, 4b, and 4d exhibited high anticholinesterase activity against both AChE and BChE enzymes. The tyrosinase inhibitory activity results revealed that three compounds (IC50 1.75 ± 0.83 µM for 2b, IC50 2.24 ± 0.11 µM for 3b, and IC50 1.90 ± 0.64 µM for 4b) displayed good inhibitory activity against tyrosinase compared with kojic acid (IC50 0.64 ± 0.12 µM). In addition, other different three chalcones (IC50 22.34 ± 0.25 µM for 2c, IC50 20.98 ± 0.08 µM for 3c, and IC50 18.26 ± 0.13 µM for 4c) showed excellent inhibitory activity against the urease by comparing with thiourea (IC50 23.08 ± 0.19 µM). Compounds 3c and 4c showed the best potency in all antioxidant activity tests. In light of these findings, the structure-activity relationship for compounds was also described. Furthermore, molecular modeling studies, including molecular docking, absorption, distribution, metabolism, excretion, and toxicity (ADMET), and pharmacophore analyses of compounds, gave important information about the interactions and drug-likeness properties. As a result, all chalcones exhibited suitable ADMET findings, predicting good oral bioavailability.


Subject(s)
Chalcones , Cholinesterase Inhibitors , Molecular Docking Simulation , Cholinesterase Inhibitors/chemistry , Cholinesterase Inhibitors/pharmacology , Chalcones/chemistry , Monophenol Monooxygenase/metabolism , Urease/metabolism , Structure-Activity Relationship , Antioxidants/chemistry , Molecular Structure
5.
Turk J Chem ; 46(3): 665-676, 2022.
Article in English | MEDLINE | ID: mdl-37720601

ABSTRACT

A series of chiral thioureas (1 - 17) were synthesized from and tested for their anticholinesterase, tyrosinase, and urease enzyme inhibitor activities. Various phenylisothiocyanates were added to solution of l-cysteine in methanol: water (1 : 1 v/v) at room temperature and stirred for 24 h. The precipitated solid was recrystallized from n-butanol. Pure compounds were characterized by NMR (1H and 13C), FTIR, and CHNS. Tertiary amine containing N-(4-(diethylamino)phenyl)-N'-(2-mercapto-carboxyethanyl)thiourea 17, N-(4-(dimethylamino)phenyl)-N'-(2-mercapto-carboxyethanyl)thiourea 16 and trimethoxy containing N-(3,4,5-trimethoxyphenyl)-N'-(2-mercapto-carboxyethanyl)thiourea 14 were more active than galantamine against AChE and BChE enzymes. In tyrosinase enzyme inhibition activity, compound 14, 10, 12, 6, 13, and 11 exhibited higher tyrosinase inhibitory activity showing IC50 values of 1.1 ± 0.1, 1.5 ± 0.3, 1.6 ± 0.6, 1.9 ± 0.5, 2.2 ± 0.9 and 2.9 ± 0.2 mM, respectively. In urease enzyme inhibition activity assay, 17 showed higher activity. This work demonstrates the pharmacological significance of chiral thiourea derivatives synthesized from l-cysteine and shows their potential. There is a need to perform more in vitro and in vivo biological activities followed by clinical trials to bring such thiourea to the market.

6.
Turk J Chem ; 46(1): 236-252, 2022.
Article in English | MEDLINE | ID: mdl-38143891

ABSTRACT

Hydrazone compounds have high capacity in terms of antioxidant activity and enzyme inhibition activities such as anticholinesterase, tyrosinase, and urease. In this study, benzoyl hydrazones compounds (7a-7m) were synthesized starting from 3,5-dimethoxy-4-hydroxybenzaldehyde. Antioxidant activity of the synthesized compounds was evaluated. In the ß-carotene-linoleic acid and ABTS cation radical scavenging activities, compounds 7j, 7e, and 7m stood out as the most active compounds, respectively. In the anticholinesterase enzyme inhibition activity results, compound 7f exhibited the best activity against AChE and BChE enzymes in the synthesis series. In addition, molecular docking analysis was performed to understand the inhibition mechanism of the synthesized compounds with target enzymes at the atomic level. In the light of biological activity and in silico studies, it has the potential to guide studies for the development of new drugs for Alzheimer disease in the future.

7.
Chirality ; 31(8): 603-615, 2019 08.
Article in English | MEDLINE | ID: mdl-31222828

ABSTRACT

In this study, a series of fluorine-containing chiral hydrazide-hydrazone derivatives [III-XII] from ʟ-cysteine ethyl ester hydrochloride was synthesized as new antioxidant and anticholinesterase agents. The antioxidant activity of these derivatives was evaluated by ABTS+· and DPPH· scavenging and CUPRAC assays and the anticholinesterase activity by the Ellman method spectrophotometrically. The results of the antioxidant assay showed that compounds V, IX, and X exhibited higher activity than BHT and α-tocopherol used as positive standards. Among the synthesized derivatives, compound IX (IC50 : 2.3 ± 1.6 µM) exhibited higher acetylcholinesterase inhibitory activity than galantamine (IC50 : 4.5 ± 0.8 µM). Compounds XI (IC50 : 9.6 ± 1.0 µM), IX (IC50 : 12.5 ± 1.6 µM), III (IC50 : 16.0 ± 1.6 µM), X (IC50 : 17.2 ± 1.8 µM), VI (IC50 : 20.2 ± 0.8 µM), XII (IC50 : 21.5 ± 1.0 µM), and VII (IC50 : 24.6 ± 0.6 µM) displayed better butyrylcholinesterase inhibitory activity than galantamine (IC50 : 46.03 ± 0.14 µM). ADME-Tox analysis was used to probe the drug-like properties of the compounds. Molecular docking studies were also applied to understand the interactions between compounds and targets. The docking calculations were supported by the experimental data. In particular, compound IX, having better activity than galantamine against acetylcholinesterase and butyrylcholinesterase enzymes, was visualized using molecular docking.


Subject(s)
Antioxidants/chemistry , Antioxidants/pharmacology , Cholinesterase Inhibitors/chemistry , Cholinesterase Inhibitors/pharmacology , Fluorine/chemistry , Animals , Antioxidants/chemical synthesis , Antioxidants/pharmacokinetics , Blood-Brain Barrier/drug effects , Cholinesterase Inhibitors/chemical synthesis , Cholinesterase Inhibitors/pharmacokinetics , Computer Simulation , Drug Design , Drug Evaluation, Preclinical , Humans , Hydrazines/chemistry , Hydrazones/chemistry , Intestinal Absorption/drug effects , Magnetic Resonance Spectroscopy , Molecular Docking Simulation , Spectrophotometry, Ultraviolet
8.
Chirality ; 31(6): 434-444, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30973650

ABSTRACT

Two new chiral thiosemicarbazide ligands and their Cu (II), Ni (II), Pd (II), and Zn (II) complexes were synthesized and characterized by nuclear magnetic resonance (NMR) (only for ligand), Fourier transform infrared (FT-IR), ultraviolet visible (UV-Vis), mass, and elemental analysis. The antioxidant activity of ligands and their metal complexes was examined. It was found that the antioxidant activity of metal complexes was better than their ligands. In addition, the antioxidant activity, as reflected by free radical scavenging, was evaluated. Besides, Pd (II) complexes exhibited better antioxidant activity than Ni (II), Cu (II), and Zn (II) complexes. Therefore, complexes (3a-Pd and 3b-Pd) can be used as an antioxidant agent or antioxidant test standard.


Subject(s)
Antioxidants/chemistry , Antioxidants/pharmacology , Semicarbazides/chemistry , Antioxidants/chemical synthesis , Coordination Complexes/chemical synthesis , Drug Evaluation, Preclinical , Ligands , Magnetic Resonance Spectroscopy , Spectroscopy, Fourier Transform Infrared
9.
Eur J Med Chem ; 124: 270-283, 2016 Nov 29.
Article in English | MEDLINE | ID: mdl-27592396

ABSTRACT

Hydrazones and the piperidine ring containing compounds were considered as beneficial substrates in drug design. Therefore, this study was aimed at the synthesis of new benzoyl hydrazones derived from ethyl 4-oxopiperidine-1-carboxylate and 2,6-diphenylpiperidin-4-one. The synthesized compounds (1-19) were screened for their antioxidant, anticholinesterase and anticancer activities. The antioxidant capacity of the compounds was evaluated by using four complementary tests. The results showed that compound 7 and 17 have the higher lipid peroxidation inhibitory activity than the other compounds. In DPPH˙ scavenging assay, compounds 5, 6, 10, 14, 17 demonstrated better activity than that of standard BHT, while in ABTS+˙ scavenging assay compound 6 and 17 exhibited better activity among the other compounds. The CUPRAC assay disclosed that compound 2 displayed better activity than α-tocopherol. The anticholinesterase activity was performed against acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) enzymes. Compound 11 (IC50: 35.30 ± 1.11 µM) inhibited BChE better than galantamine (IC50: 46.03 ± 0.14 µM). We conclude that the compound 11 can be considered as a candidate for BChE inhibitor. Moreover docking method was applied to elucidate the AChE and BChE inhibitory mechanism of the compound 11. Molecular docking analysis revealed that compound 11 bound to BChE enzyme more efficiently when compared to the AChE due to its orientations and different types of interactions. In addition, the non-cytotoxic properties of the compounds brought them into prominence, although they did not show significant anticancer properties.


Subject(s)
Acetylcholinesterase/metabolism , Butyrylcholinesterase/metabolism , Drug Design , Hydrazones/chemistry , Molecular Docking Simulation , Piperidines/chemical synthesis , Piperidines/pharmacology , Acetylcholinesterase/chemistry , Alzheimer Disease/drug therapy , Alzheimer Disease/enzymology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Catalytic Domain , Cell Line, Tumor , Cell Survival/drug effects , Chemistry Techniques, Synthetic , Cholinesterase Inhibitors/chemical synthesis , Cholinesterase Inhibitors/chemistry , Cholinesterase Inhibitors/pharmacology , Cholinesterase Inhibitors/therapeutic use , Humans , Piperidines/chemistry , Piperidines/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...