Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
2.
Nature ; 614(7947): 239-243, 2023 02.
Article in English | MEDLINE | ID: mdl-36755175

ABSTRACT

Planetary rings are observed not only around giant planets1, but also around small bodies such as the Centaur Chariklo2 and the dwarf planet Haumea3. Up to now, all known dense rings were located close enough to their parent bodies, being inside the Roche limit, where tidal forces prevent material with reasonable densities from aggregating into a satellite. Here we report observations of an inhomogeneous ring around the trans-Neptunian body (50000) Quaoar. This trans-Neptunian object has an estimated radius4 of 555 km and possesses a roughly 80-km satellite5 (Weywot) that orbits at 24 Quaoar radii6,7. The detected ring orbits at 7.4 radii from the central body, which is well outside Quaoar's classical Roche limit, thus indicating that this limit does not always determine where ring material can survive. Our local collisional simulations show that elastic collisions, based on laboratory experiments8, can maintain a ring far away from the body. Moreover, Quaoar's ring orbits close to the 1/3 spin-orbit resonance9 with Quaoar, a property shared by Chariklo's2,10,11 and Haumea's3 rings, suggesting that this resonance plays a key role in ring confinement for small bodies.

3.
Nature ; 550(7675): 219-223, 2017 10 11.
Article in English | MEDLINE | ID: mdl-29022593

ABSTRACT

Haumea-one of the four known trans-Neptunian dwarf planets-is a very elongated and rapidly rotating body. In contrast to other dwarf planets, its size, shape, albedo and density are not well constrained. The Centaur Chariklo was the first body other than a giant planet known to have a ring system, and the Centaur Chiron was later found to possess something similar to Chariklo's rings. Here we report observations from multiple Earth-based observatories of Haumea passing in front of a distant star (a multi-chord stellar occultation). Secondary events observed around the main body of Haumea are consistent with the presence of a ring with an opacity of 0.5, width of 70 kilometres and radius of about 2,287 kilometres. The ring is coplanar with both Haumea's equator and the orbit of its satellite Hi'iaka. The radius of the ring places it close to the 3:1 mean-motion resonance with Haumea's spin period-that is, Haumea rotates three times on its axis in the time that a ring particle completes one revolution. The occultation by the main body provides an instantaneous elliptical projected shape with axes of about 1,704 kilometres and 1,138 kilometres. Combined with rotational light curves, the occultation constrains the three-dimensional orientation of Haumea and its triaxial shape, which is inconsistent with a homogeneous body in hydrostatic equilibrium. Haumea's largest axis is at least 2,322 kilometres, larger than previously thought, implying an upper limit for its density of 1,885 kilograms per cubic metre and a geometric albedo of 0.51, both smaller than previous estimates. In addition, this estimate of the density of Haumea is closer to that of Pluto than are previous estimates, in line with expectations. No global nitrogen- or methane-dominated atmosphere was detected.

4.
Nature ; 508(7494): 72-5, 2014 Apr 03.
Article in English | MEDLINE | ID: mdl-24670644

ABSTRACT

Hitherto, rings have been found exclusively around the four giant planets in the Solar System. Rings are natural laboratories in which to study dynamical processes analogous to those that take place during the formation of planetary systems and galaxies. Their presence also tells us about the origin and evolution of the body they encircle. Here we report observations of a multichord stellar occultation that revealed the presence of a ring system around (10199) Chariklo, which is a Centaur--that is, one of a class of small objects orbiting primarily between Jupiter and Neptune--with an equivalent radius of 124 ± 9 kilometres (ref. 2). There are two dense rings, with respective widths of about 7 and 3 kilometres, optical depths of 0.4 and 0.06, and orbital radii of 391 and 405 kilometres. The present orientation of the ring is consistent with an edge-on geometry in 2008, which provides a simple explanation for the dimming of the Chariklo system between 1997 and 2008, and for the gradual disappearance of ice and other absorption features in its spectrum over the same period. This implies that the rings are partly composed of water ice. They may be the remnants of a debris disk, possibly confined by embedded, kilometre-sized satellites.

5.
Nature ; 491(7425): 566-9, 2012 Nov 22.
Article in English | MEDLINE | ID: mdl-23172214

ABSTRACT

Pluto and Eris are icy dwarf planets with nearly identical sizes, comparable densities and similar surface compositions as revealed by spectroscopic studies. Pluto possesses an atmosphere whereas Eris does not; the difference probably arises from their differing distances from the Sun, and explains their different albedos. Makemake is another icy dwarf planet with a spectrum similar to Eris and Pluto, and is currently at a distance to the Sun intermediate between the two. Although Makemake's size (1,420 ± 60 km) and albedo are roughly known, there has been no constraint on its density and there were expectations that it could have a Pluto-like atmosphere. Here we report the results from a stellar occultation by Makemake on 2011 April 23. Our preferred solution that fits the occultation chords corresponds to a body with projected axes of 1,430 ± 9 km (1σ) and 1,502 ± 45 km, implying a V-band geometric albedo p(V) = 0.77 ± 0.03. This albedo is larger than that of Pluto, but smaller than that of Eris. The disappearances and reappearances of the star were abrupt, showing that Makemake has no global Pluto-like atmosphere at an upper limit of 4-12 nanobar (1σ) for the surface pressure, although a localized atmosphere is possible. A density of 1.7 ± 0.3 g cm(-3) is inferred from the data.

6.
Nature ; 478(7370): 493-6, 2011 Oct 26.
Article in English | MEDLINE | ID: mdl-22031441

ABSTRACT

The dwarf planet Eris is a trans-Neptunian object with an orbital eccentricity of 0.44, an inclination of 44 degrees and a surface composition very similar to that of Pluto. It resides at present at 95.7 astronomical units (1 AU is the Earth-Sun distance) from Earth, near its aphelion and more than three times farther than Pluto. Owing to this great distance, measuring its size or detecting a putative atmosphere is difficult. Here we report the observation of a multi-chord stellar occultation by Eris on 6 November 2010 UT. The event is consistent with a spherical shape for Eris, with radius 1,163 ± 6 kilometres, density 2.52 ± 0.05 grams per cm(3) and a high visible geometric albedo, Pv = 0.96(+0.09)(-0.04). No nitrogen, argon or methane atmospheres are detected with surface pressure larger than ∼1 nanobar, about 10,000 times more tenuous than Pluto's present atmosphere. As Pluto's radius is estimated to be between 1,150 and 1,200 kilometres, Eris appears as a Pluto twin, with a bright surface possibly caused by a collapsed atmosphere, owing to its cold environment. We anticipate that this atmosphere may periodically sublimate as Eris approaches its perihelion, at 37.8 astronomical units from the Sun.

7.
Nature ; 448(7149): 54-6, 2007 Jul 05.
Article in English | MEDLINE | ID: mdl-17611536

ABSTRACT

Hyperion, Saturn's eighth largest icy satellite, is a body of irregular shape in a state of chaotic rotation. The surface is segregated into two distinct units. A spatially dominant high-albedo unit having the strong signature of H2O ice contrasts with a unit that is about a factor of four lower in albedo and is found mostly in the bottoms of cup-like craters. Here we report observations of Hyperion's surface in the ultraviolet and near-infrared spectral regions with two optical remote sensing instruments on the Cassini spacecraft at closest approach during a fly-by on 25-26 September 2005. The close fly-by afforded us the opportunity to obtain separate reflectance spectra of the high- and low-albedo surface components. The low-albedo material has spectral similarities and compositional signatures that link it with the surface of Phoebe and a hemisphere-wide superficial coating on Iapetus.

8.
Science ; 311(5766): 1425-8, 2006 Mar 10.
Article in English | MEDLINE | ID: mdl-16527972

ABSTRACT

Observations of Saturn's satellite Enceladus using Cassini's Visual and Infrared Mapping Spectrometer instrument were obtained during three flybys of Enceladus in 2005. Enceladus' surface is composed mostly of nearly pure water ice except near its south pole, where there are light organics, CO2, and amorphous and crystalline water ice, particularly in the region dubbed the "tiger stripes." An upper limit of 5 precipitable nanometers is derived for CO in the atmospheric column above Enceladus, and 2% for NH3 in global surface deposits. Upper limits of 140 kelvin (for a filled pixel) are derived for the temperatures in the tiger stripes.


Subject(s)
Extraterrestrial Environment/chemistry , Ice/analysis , Saturn , Ammonia/analysis , Atmosphere , Carbon Dioxide/analysis , Ice Cover , Spectrophotometry, Infrared
9.
Nature ; 439(7072): 52-4, 2006 Jan 05.
Article in English | MEDLINE | ID: mdl-16397493

ABSTRACT

Pluto and its satellite, Charon (discovered in 1978; ref. 1), appear to form a double planet, rather than a hierarchical planet/satellite couple. Charon is about half Pluto's size and about one-eighth its mass. The precise radii of Pluto and Charon have remained uncertain, leading to large uncertainties on their densities. Although stellar occultations by Charon are in principle a powerful way of measuring its size, they are rare, as the satellite subtends less than 0.3 microradians (0.06 arcsec) on the sky. One occultation (in 1980) yielded a lower limit of 600 km for the satellite's radius, which was later refined to 601.5 km (ref. 4). Here we report observations from a multi-station stellar occultation by Charon, which we use to derive a radius, R(C) = 603.6 +/- 1.4 km (1sigma), and a density of rho = 1.71 +/- 0.08 g cm(-3). This occultation also provides upper limits of 110 and 15 (3sigma) nanobar for an atmosphere around Charon, assuming respectively a pure nitrogen or pure methane atmosphere.

10.
Science ; 310(5747): 474-7, 2005 Oct 21.
Article in English | MEDLINE | ID: mdl-16239472

ABSTRACT

Spectra from Cassini's Visual and Infrared Mapping Spectrometer reveal that the horizontal structure, height, and optical depth of Titan's clouds are highly dynamic. Vigorous cloud centers are seen to rise from the middle to the upper troposphere within 30 minutes and dissipate within the next hour. Their development indicates that Titan's clouds evolve convectively; dissipate through rain; and, over the next several hours, waft downwind to achieve their great longitude extents. These and other characteristics suggest that temperate clouds originate from circulation-induced convergence, in addition to a forcing at the surface associated with Saturn's tides, geology, and/or surface composition.


Subject(s)
Methane , Saturn , Atmosphere , Extraterrestrial Environment , Spacecraft , Spectrum Analysis
11.
Nature ; 435(7043): 786-9, 2005 Jun 09.
Article in English | MEDLINE | ID: mdl-15944697

ABSTRACT

Titan is the only satellite in our Solar System with a dense atmosphere. The surface pressure is 1.5 bar (ref. 1) and, similar to the Earth, N2 is the main component of the atmosphere. Methane is the second most important component, but it is photodissociated on a timescale of 10(7) years (ref. 3). This short timescale has led to the suggestion that Titan may possess a surface or subsurface reservoir of hydrocarbons to replenish the atmosphere. Here we report near-infrared images of Titan obtained on 26 October 2004 by the Cassini spacecraft. The images show that a widespread methane ocean does not exist; subtle albedo variations instead suggest topographical variations, as would be expected for a more solid (perhaps icy) surface. We also find a circular structure approximately 30 km in diameter that does not resemble any features seen on other icy satellites. We propose that the structure is a dome formed by upwelling icy plumes that release methane into Titan's atmosphere.


Subject(s)
Extraterrestrial Environment/chemistry , Gases/analysis , Ice/analysis , Infrared Rays , Moon , Photography , Saturn , Atmosphere/chemistry , Gases/chemistry , Geography , Hydrocarbons/analysis , Hydrocarbons/chemistry , Methane/analysis , Methane/chemistry , Spacecraft
12.
Nature ; 435(7038): 66-9, 2005 May 05.
Article in English | MEDLINE | ID: mdl-15875014

ABSTRACT

The origin of Phoebe, which is the outermost large satellite of Saturn, is of particular interest because its inclined, retrograde orbit suggests that it was gravitationally captured by Saturn, having accreted outside the region of the solar nebula in which Saturn formed. By contrast, Saturn's regular satellites (with prograde, low-inclination, circular orbits) probably accreted within the sub-nebula in which Saturn itself formed. Here we report imaging spectroscopy of Phoebe resulting from the Cassini-Huygens spacecraft encounter on 11 June 2004. We mapped ferrous-iron-bearing minerals, bound water, trapped CO2, probable phyllosilicates, organics, nitriles and cyanide compounds. Detection of these compounds on Phoebe makes it one of the most compositionally diverse objects yet observed in our Solar System. It is likely that Phoebe's surface contains primitive materials from the outer Solar System, indicating a surface of cometary origin.

13.
Nature ; 424(6945): 168-70, 2003 Jul 10.
Article in English | MEDLINE | ID: mdl-12853950

ABSTRACT

Pluto's tenuous nitrogen atmosphere was first detected by the imprint left on the light curve of a star that was occulted by the planet in 1985 (ref. 1), and studied more extensively during a second occultation event in 1988 (refs 2-6). These events are, however, quite rare and Pluto's atmosphere remains poorly understood, as in particular the planet has not yet been visited by a spacecraft. Here we report data from the first occultations by Pluto since 1988. We find that, during the intervening 14 years, there seems to have been a doubling of the atmospheric pressure, a probable seasonal effect on Pluto.

SELECTION OF CITATIONS
SEARCH DETAIL
...