Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Hazard Mater ; 284: 10-8, 2015 Mar 02.
Article in English | MEDLINE | ID: mdl-25463212

ABSTRACT

BTEX is a group of volatile organic compounds consisting of benzene, toluene, ethylbenzene and xylenes. Environmental contamination of BTEX can occur in the groundwater with their effects on the aquatic organisms and ecosystem being sparsely studied. The aim of this study was to evaluate the toxic effects of individual and mixed BTEX on Euglena gracilis (E. gracilis). We examined the growth rate, morphological changes and chlorophyll contents in E. gracilis Z and its mutant SMZ cells treated with single and mixture of BTEX. BTEX induced morphological change, formation of lipofuscin, and decreased chlorophyll content of E. gracilis Z in a dose response manner. The toxicity of individual BTEX on cell growth and chlorophyll inhibition is in the order of xylenes>ethylbenzene>toluene>benzene. SMZ was found more sensitive to BTEX than Z at much lower concentrations between 0.005 and 5 µM. The combined effect of mixed BTEX on chlorophyll contents was shown to be concentration addition (CA). Results from this study suggested that E. gracilis could be a suitable model for monitoring BTEX in the groundwater and predicting the combined effects on aqueous ecosystem.


Subject(s)
Benzene Derivatives/toxicity , Benzene/toxicity , Chlorophyll/chemistry , Euglena gracilis/drug effects , Toluene/toxicity , Water Pollutants/toxicity , Xylenes/toxicity , DNA Damage , Dose-Response Relationship, Drug , Environmental Pollutants , Gas Chromatography-Mass Spectrometry , Lipofuscin/chemistry , Reactive Oxygen Species , Volatile Organic Compounds , Water Microbiology
2.
Chemosphere ; 93(10): 2381-9, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24034892

ABSTRACT

Benzene is a representative member of volatile organic compounds and has been widely used as an industrial solvent. Groundwater contamination of benzene may pose risks to human health and ecosystems. Detection of benzene in the groundwater using chemical analysis is expensive and time consuming. In addition, biological responses to environmental exposures are uninformative using such analysis. Therefore, the aim of this study was to employ a microorganism, Euglena gracilis (E. gracilis) as a putative model to monitor the contamination of benzene in groundwater. To this end, we examined the wild type of E. gracilis Z and its mutant form, SMZ in their growth rate, morphology, chlorophyll content, formation of reactive oxygen species (ROS) and DNA damage in response to benzene exposure. The results showed that benzene inhibited cell growth in a dose response manner up to 48 h of exposure. SMZ showed a greater sensitivity compared to Z in response to benzene exposure. The difference was more evident at lower concentrations of benzene (0.005-5 µM) where growth inhibition occurred in SMZ but not in Z cells. We found that benzene induced morphological changes, formation of lipofuscin, and decreased chlorophyll content in Z strain in a dose response manner. No significant differences were found between the two strains in ROS formation and DNA damage by benzene at concentrations affecting cell growth. Based on these results, we conclude that E. gracilis cells were sensitive to benzene-induced toxicities for certain endpoints such as cell growth rate, morphological change, depletion of chlorophyll. Therefore, it is a potentially suitable model for monitoring the contamination of benzene and its effects in the groundwater.


Subject(s)
Benzene/toxicity , Euglena gracilis/drug effects , Water Pollutants, Chemical/toxicity , Chlorophyll/metabolism , DNA Damage , Euglena gracilis/genetics , Euglena gracilis/physiology , Reactive Oxygen Species/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...