Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 131(21): 211001, 2023 Nov 24.
Article in English | MEDLINE | ID: mdl-38072601

ABSTRACT

We propose a novel dark matter detection method utilizing the excitation of superconducting transmon qubits. Assuming the hidden photon dark matter of a mass of O(10) µeV, the classical wave-matter oscillation induces an effective ac electric field via the small kinetic mixing with the ordinary photon. This serves as a coherent drive field for a qubit when it is resonant, evolving it from the ground state towards the first-excited state. We evaluate the rate of such evolution and observable excitations in the measurements, as well as the search sensitivity to the hidden photon dark matter. For a selected mass, one can reach ε∼10^{-13}-10^{-12} (where ε is the kinetic mixing parameter of the hidden photon) with a few tens of seconds using a single standard transmon qubit. A simple extension to the frequency-tunable SQUID-based transmon enables the mass scan to cover the range of 4-40 µeV (1-10 GHz) within a reasonable length of run time. The scheme has great potential to extend the sensitivity towards various directions including being incorporated into the cavity-based haloscope experiments or the currently available multibit noisy intermediate-scale quantum (NISQ) computer machines.

SELECTION OF CITATIONS
SEARCH DETAIL
...