Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Hazard Mater ; 323(Pt A): 452-459, 2017 Feb 05.
Article in English | MEDLINE | ID: mdl-27036096

ABSTRACT

Worldwide water shortage increase and water quality depletion from microbial and chemical compounds, pose significant challenges for today's water treatment industry. Both the development of new advanced oxidation technologies, but also the enhancement of existing conventional technologies is of high interest. This study tested improvements to conventional ozonation that reduce the formation of the oxidation-by-product bromate, while maintaining the effectiveness for removal emerging contaminants (atrazine). MnO4-, ClO2-, ClO2, ClO-, CH3COOO-, HSO5- or S2O8-2 with NH4+ were tested as pre-treatments to ozonation of ground water. Each oxidant and NH4+ were added in a single stage or separately prior to ozonation. To the best of our knowledge, this is the first study that has tested all the above-mentioned oxidants for the same water matrix. Based on our results, the most promising pre-treatments were MnO4--NH4+, ClO2--NH4+ and ClO2-NH4+. MnO4--NH4+ was the only pre-treatment that did not inhibit atrazine removal. When compared with the previously proposed Cl2/NH4+ pre-treatment, MnO4-+NH4+ was found as effective for preventing BrO3- formation, while atrazine removal was higher. In addition, MnO4-+NH4+ can be added in a single stage (compared to the 2 stage addition of Cl2/NH4+) without causing the formation of potentially harmful chlorination-by-products.

2.
J Photochem Photobiol B ; 88(2-3): 105-11, 2007 Sep 25.
Article in English | MEDLINE | ID: mdl-17624798

ABSTRACT

The results of a batch-process solar disinfection (SODIS) and solar photocatalytic disinfection (SPCDIS) on drinking water contaminated with Cryptosporidium are reported. Cryptosporidium parvum oocyst suspensions were exposed to natural sunlight in Southern Spain and the oocyst viability was evaluated using two vital dyes [4',6-diamidino-2-phenylindole (DAPI) and propidium iodide (PI)]. SODIS exposures (strong sunlight) of 8 and 12h reduced oocyst viability from 98% (+/-1.3%) to 11.7% (+/-0.9%) and 0.3% (+/-0.33%), respectively. SODIS reactors fitted with flexible plastic inserts coated with TiO2 powder (SPCDIS) were found to be more effective than those which were not. After 8 and 16 h of overcast and cloudy solar irradiance conditions, SPCDIS reduced oocyst viability from 98.3% (+/-0.3%) to 37.7% (+/-2.6%) and 11.7% (+/-0.7%), respectively, versus to that achieved using SODIS of 81.3% (+/-1.6%) and 36.0% (+/-1.0%), respectively. These results confirm that solar disinfection of drinking water can be an effective household intervention against Cryptosporidium contamination.


Subject(s)
Cryptosporidium parvum/radiation effects , Disinfection/methods , Oocysts/radiation effects , Sunlight , Titanium/chemistry , Water Purification/methods , Water Supply , Animals , Catalysis , Cell Survival/physiology , Cell Survival/radiation effects , Cryptosporidium parvum/growth & development , Oocysts/growth & development , Time Factors , Water Microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...