Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Struct Biol ; 180(1): 201-15, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22651963

ABSTRACT

The identification of intrinsically disordered proteins (IDPs) among the targets that fail to form satisfactory crystal structures in the Protein Structure Initiative represents a key to reducing the costs and time for determining three-dimensional structures of proteins. To help in this endeavor, several Protein Structure Initiative Centers were asked to send samples of both crystallizable proteins and proteins that failed to crystallize. The abundance of intrinsic disorder in these proteins was evaluated via computational analysis using predictors of natural disordered regions (PONDR®) and the potential cleavage sites and corresponding fragments were determined. Then, the target proteins were analyzed for intrinsic disorder by their resistance to limited proteolysis. The rates of tryptic digestion of sample target proteins were compared to those of lysozyme/myoglobin, apomyoglobin, and α-casein as standards of ordered, partially disordered and completely disordered proteins, respectively. At the next stage, the protein samples were subjected to both far-UV and near-UV circular dichroism (CD) analysis. For most of the samples, a good agreement between CD data, predictions of disorder and the rates of limited tryptic digestion was established. Further experimentation is being performed on a smaller subset of these samples in order to obtain more detailed information on the ordered/disordered nature of the proteins.


Subject(s)
Models, Molecular , Proteins/chemistry , Animals , Calibration , Circular Dichroism/standards , Computational Biology , Crystallization , Crystallography, X-Ray , Databases, Protein , Electrophoresis, Polyacrylamide Gel , Humans , Knowledge Bases , Protein Structure, Secondary , Protein Structure, Tertiary , Proteolysis , Reference Standards , Structural Homology, Protein , Trypsin/chemistry
2.
Nucleic Acids Res ; 35(Database issue): D786-93, 2007 Jan.
Article in English | MEDLINE | ID: mdl-17145717

ABSTRACT

The Database of Protein Disorder (DisProt) links structure and function information for intrinsically disordered proteins (IDPs). Intrinsically disordered proteins do not form a fixed three-dimensional structure under physiological conditions, either in their entireties or in segments or regions. We define IDP as a protein that contains at least one experimentally determined disordered region. Although lacking fixed structure, IDPs and regions carry out important biological functions, being typically involved in regulation, signaling and control. Such functions can involve high-specificity low-affinity interactions, the multiple binding of one protein to many partners and the multiple binding of many proteins to one partner. These three features are all enabled and enhanced by protein intrinsic disorder. One of the major hindrances in the study of IDPs has been the lack of organized information. DisProt was developed to enable IDP research by collecting and organizing knowledge regarding the experimental characterization and the functional associations of IDPs. In addition to being a unique source of biological information, DisProt opens doors for a plethora of bioinformatics studies. DisProt is openly available at http://www.disprot.org.


Subject(s)
Databases, Protein , Protein Conformation , Internet , Protein Folding , Proteins/physiology , User-Computer Interface
3.
Proc Natl Acad Sci U S A ; 103(22): 8390-5, 2006 May 30.
Article in English | MEDLINE | ID: mdl-16717195

ABSTRACT

Alternative splicing of pre-mRNA generates two or more protein isoforms from a single gene, thereby contributing to protein diversity. Despite intensive efforts, an understanding of the protein structure-function implications of alternative splicing is still lacking. Intrinsic disorder, which is a lack of equilibrium 3D structure under physiological conditions, may provide this understanding. Intrinsic disorder is a common phenomenon, particularly in multicellular eukaryotes, and is responsible for important protein functions including regulation and signaling. We hypothesize that polypeptide segments affected by alternative splicing are most often intrinsically disordered such that alternative splicing enables functional and regulatory diversity while avoiding structural complications. We analyzed a set of 46 differentially spliced genes encoding experimentally characterized human proteins containing both structured and intrinsically disordered amino acid segments. We show that 81% of 75 alternatively spliced fragments in these proteins were associated with fully (57%) or partially (24%) disordered protein regions. Regions affected by alternative splicing were significantly biased toward encoding disordered residues, with a vanishingly small P value. A larger data set composed of 558 SwissProt proteins with known isoforms produced by 1,266 alternatively spliced fragments was characterized by applying the pondr vsl1 disorder predictor. Results from prediction data are consistent with those obtained from experimental data, further supporting the proposed hypothesis. Associating alternative splicing with protein disorder enables the time- and tissue-specific modulation of protein function needed for cell differentiation and the evolution of multicellular organisms.


Subject(s)
Alternative Splicing , Proteins/genetics , Proteins/metabolism , Animals , Humans , Models, Molecular , Protein Conformation , Protein Isoforms/genetics , Protein Isoforms/metabolism , Proteins/chemistry , Transcription, Genetic/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...