Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Biomed Eng Lett ; 14(1): 23-33, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38186944

ABSTRACT

Glaucoma is one of the leading causes of permanent blindness in the world. It is caused due to an increase in the intraocular pressure within the eye that harms the optic nerve. People suffering from Glaucoma often do not notice any changes in their vision in the early stages. However, as it progresses, Glaucoma usually leads to vision loss that is irreversible in many cases. Thus, early diagnosis of this eye disease is of critical importance. The fundus image is one of the most used diagnostic tools for glaucoma detection. However, drawing accurate insights from these images requires them to be manually analyzed by medical experts, which is a time-consuming process. In this work, we propose a parameter-efficient AlterNet-K model based on an alternating design pattern, which combines ResNets and multi-head self-attention (MSA) to leverage their complementary properties to improve the generalizability of the overall model. The model was trained on the Rotterdam EyePACS AIROGS dataset, comprising 113,893 colour fundus images from 60,357 subjects. The AlterNet-K model outperformed transformer models such as ViT, DeiT-S, and Swin transformer, standard DCNN models including ResNet, EfficientNet, MobileNet and VGG with an accuracy of 0.916, AUROC of 0.968 and F1 score of 0.915. The results indicate that smaller CNN models combined with self-attention mechanisms can achieve high classification accuracies. Small and compact Resnet models combined with MSA outperform their larger counterparts. The models in this work can be extended to handle classification tasks in other medical imaging domains.

2.
Comput Biol Med ; 137: 104835, 2021 10.
Article in English | MEDLINE | ID: mdl-34508976

ABSTRACT

The world is significantly affected by infectious coronavirus disease (covid-19). Timely prognosis and treatment are important to control the spread of this infection. Unreliable screening systems and limited number of clinical facilities are the major hurdles in controlling the spread of covid-19. Nowadays, many automated detection systems based on deep learning techniques using computed tomography (CT) images have been proposed to detect covid-19. However, these systems have the following drawbacks: (i) limited data problem poses a major hindrance to train the deep neural network model to provide accurate diagnosis, (ii) random choice of hyperparameters of Convolutional Neural Network (CNN) significantly affects the classification performance, since the hyperparameters have to be application dependent and, (iii) the generalization ability using CNN classification is usually not validated. To address the aforementioned issues, we propose two models: (i) based on a transfer learning approach, and (ii) using novel strategy to optimize the CNN hyperparameters using Whale optimization-based BAT algorithm + AdaBoost classifier built using dynamic ensemble selection techniques. According to our second method depending on the characteristics of test sample, the classifier is chosen, thereby reducing the risk of overfitting and simultaneously produced promising results. Our proposed methodologies are developed using 746 CT images. Our method obtained a sensitivity, specificity, accuracy, F-1 score, and precision of 0.98, 0.97, 0.98, 0.98, and 0.98, respectively with five-fold cross-validation strategy. Our developed prototype is ready to be tested with huge chest CT images database before its real-world application.


Subject(s)
COVID-19 , Humans , Neural Networks, Computer , SARS-CoV-2 , Tomography , Tomography, X-Ray Computed
3.
Appl Soft Comput ; 104: 107238, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33649705

ABSTRACT

The novel coronavirus termed as covid-19 has taken the world by its crutches affecting innumerable lives with devastating impact on the global economy and public health. One of the major ways to control the spread of this disease is identification in the initial stage, so that isolation and treatment could be initiated. Due to the lack of automated auxiliary diagnostic medical tools, availability of lesser sensitivity testing kits, and limited availability of healthcare professionals, the pandemic has spread like wildfire across the world. Certain recent findings state that chest X-ray scans contain salient information regarding the onset of the virus, the information can be analyzed so that the diagnosis and treatment can be initiated at an earlier stage. This is where artificial intelligence meets the diagnostic capabilities of experienced clinicians. The objective of the proposed research is to contribute towards fighting the global pandemic by developing an automated image analysis module for identifying covid-19 affected chest X-ray scans by employing an optimized Convolution Neural Network (CNN) model. The aforementioned objective is achieved in the following manner by developing three classification models, (i) ensemble of ResNet 50-Error Correcting Output Code (ECOC) model, (ii) CNN optimized using Grey Wolf Optimizer (GWO) and, (iii) CNN optimized using Whale Optimization + BAT algorithm. The novelty of the proposed method lies in the automatic tuning of hyper parameters considering a hierarchy of MultiLayer Perceptron (MLP), feature extraction, and optimization ensemble. A 100% classification accuracy was obtained in classifying covid-19 images. Classification accuracy of 98.8% and 96% were obtained for dataset 1 and dataset 2 respectively for classification into covid-19, normal, and viral pneumonia cases. The proposed method can be adopted in a clinical setting for assisting radiologists and it can also be employed in remote areas to facilitate the faster screening of affected patients.

4.
Biomed J ; 43(1): 74-82, 2020 02.
Article in English | MEDLINE | ID: mdl-32200958

ABSTRACT

BACKGROUND: Evaluation of segmented colon is one of the challenges in Computed Tomography Colonography (CTC). The objective of the study was to measure the segmented colon accurately using image processing techniques. METHODS: This was a retrospective study, and the Institutional Ethical clearance was obtained for the secondary dataset. The technique was tested on 85 CTC dataset. The CTC dataset of 100-120 kVp, 100 mA, and ST (Slice Thickness) of 1.25 and 2.5 mm were used for empirical testing. The initial results of the work appear in the conference proceedings. Post colon segmentation, three distance measurement techniques, and one volumetric overlap computation were applied in Euclidian space in which the distances were measured on MPR views of the segmented and unsegmented colons and the volumetric overlap calculation between these two volumes. RESULTS: The key finding was that the measurements on both the segmented and the unsegmented volumes remain same without much difference noticed. This was statistically proved. The results were validated quantitatively on 2D MPR images. An accuracy of 95.265±0.4551% was achieved through volumetric overlap computation. Through pairedt-test, at α=5%, statistical values were p=0.6769, and t=0.4169 which infer that there was no much significant difference. CONCLUSION: The combination of different validation techniques was applied to check the robustness of colon segmentation method, and good results were achieved with this approach. Through quantitative validation, the results were accepted at α=5%.


Subject(s)
Colon/pathology , Colonography, Computed Tomographic , Dimensional Measurement Accuracy , Image Processing, Computer-Assisted , Algorithms , Colonography, Computed Tomographic/methods , Humans , Image Processing, Computer-Assisted/methods , Retrospective Studies
5.
Med Biol Eng Comput ; 56(11): 2051-2065, 2018 Nov.
Article in English | MEDLINE | ID: mdl-29761315

ABSTRACT

Automated segmentation and dermoscopic hair detection are one of the significant challenges in computer-aided diagnosis (CAD) of melanocytic lesions. Additionally, due to the presence of artifacts and variation in skin texture and smooth lesion boundaries, the accuracy of such methods gets hampered. The objective of this research is to develop an automated hair detection and lesion segmentation algorithm using lesion-specific properties to improve the accuracy. The aforementioned objective is achieved in two ways. Firstly, a novel hair detection algorithm is designed by considering the properties of dermoscopic hair. Second, a novel chroma-based geometric deformable model is used to effectively differentiate the lesion from the surrounding skin. The speed function incorporates the chrominance properties of the lesion to stop evolution at the lesion boundary. Automatic initialization of the initial contour and chrominance-based speed function aids in providing robust and flexible segmentation. The proposed approach is tested on 200 images from PH2 and 900 images from ISBI 2016 datasets. Average accuracy, sensitivity, specificity, and overlap scores of 93.4, 87.6, 95.3, and 11.52% respectively are obtained for the PH2 dataset. Similarly, the proposed method resulted in average accuracy, sensitivity, specificity, and overlap scores of 94.6, 82.4, 97.2, and 7.20% respectively for the ISBI 2016 dataset. Statistical and quantitative analyses prove the reliability of the algorithm for incorporation in CAD systems. Graphical Abstract Overview of proposed system.


Subject(s)
Dermoscopy/methods , Diagnosis, Computer-Assisted/methods , Hair/diagnostic imaging , Melanoma/diagnostic imaging , Skin Neoplasms/diagnostic imaging , Algorithms , Artifacts , Humans , Image Interpretation, Computer-Assisted/methods , Pattern Recognition, Automated/methods , Sensitivity and Specificity
6.
Int J Comput Assist Radiol Surg ; 12(11): 1845-1855, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28573348

ABSTRACT

PURPOSE: Automated measurement of the size and shape of colon polyps is one of the challenges in Computed tomography colonography (CTC). The objective of this retrospective study was to improve the sensitivity and specificity of smaller polyp measurement in CTC using image processing techniques. METHODS: A domain knowledge-based method has been implemented with hybrid method of colon segmentation, morphological image processing operators for detecting the colonic structures, and the decision-making system for delineating the smaller polyp-based on a priori knowledge. RESULTS: The method was applied on 45 CTC dataset. The key finding was that the smaller polyps were accurately measured. In addition to 6-9 mm range, polyps of even <5 mm were also detected. The results were validated qualitatively and quantitatively using both 2D MPR and 3D view. Implementation was done on a high-performance computer with parallel processing. It takes [Formula: see text] min for measuring the smaller polyp in a dataset of 500 CTC images. With this method, [Formula: see text] and [Formula: see text] were achieved. CONCLUSIONS: The domain-based approach with morphological image processing has given good results. The smaller polyps were measured accurately which helps in making right clinical decisions. Qualitatively and quantitatively the results were acceptable when compared to the ground truth at [Formula: see text].


Subject(s)
Colonic Polyps/diagnostic imaging , Colonography, Computed Tomographic/methods , Image Processing, Computer-Assisted/methods , Adult , Case-Control Studies , Colon/diagnostic imaging , Humans , Imaging, Three-Dimensional , Multidetector Computed Tomography , Radiographic Image Interpretation, Computer-Assisted , Retrospective Studies , Sensitivity and Specificity , Tomography, Spiral Computed
SELECTION OF CITATIONS
SEARCH DETAIL
...