Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Crit Care ; 27(1): 408, 2023 10 27.
Article in English | MEDLINE | ID: mdl-37891688

ABSTRACT

Dual circulation is a common but underrecognized physiological occurrence associated with peripheral venoarterial extracorporeal membrane oxygenation (ECMO). Competitive flow will develop between blood ejected from the heart and blood travelling retrograde within the aorta from the ECMO reinfusion cannula. The intersection of these two competitive flows is referred to as the "mixing point". The location of this mixing point, which depends upon the relative strengths of the native and extracorporeal pumps, will determine which regions of the body are perfused with blood ejected from the left ventricle and which regions are perfused by reinfused blood from the ECMO circuit, effectively establishing dual circulations. Because gas exchange within these circulations is dictated by the native lungs and membrane lung, respectively, oxygenation and carbon dioxide removal may differ between regions-depending on how well gas exchange is preserved within each circulation-potentially leading to differential oxygenation or differential carbon dioxide, each of which may have important clinical implications. In this perspective, we address the identification and management of dual circulation and differential gas exchange through various clinical scenarios of venoarterial ECMO. Recognition of dual circulation, proper monitoring for differential gas exchange, and understanding the various strategies to resolve differential oxygenation and carbon dioxide may allow for more optimal patient management and improved clinical outcomes.


Subject(s)
Extracorporeal Membrane Oxygenation , Respiratory Insufficiency , Humans , Extracorporeal Membrane Oxygenation/adverse effects , Respiratory Insufficiency/etiology , Carbon Dioxide , Lung , Heart
2.
Kidney Int ; 82(6): 635-42, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22718186

ABSTRACT

The mechanism of edema formation in the nephrotic syndrome has long been a source of controversy. In this review, through the construct of Starling's forces, we examine the roles of albumin, intravascular volume, and neurohormones on edema formation and highlight the evolving literature on the role of primary sodium absorption in edema formation. We propose that a unifying mechanism of sodium retention is present in the nephrotic syndrome regardless of intravascular volume status and is due to the activation of epithelial sodium channel by serine proteases in the glomerular filtrate of nephrotic patients. Finally, we assert that mechanisms in addition to sodium retention are likely operant in the formation of nephrotic edema.


Subject(s)
Edema/etiology , Kidney/physiopathology , Nephrotic Syndrome/complications , Animals , Blood Volume , Capillary Permeability , Edema/metabolism , Edema/physiopathology , Humans , Hydrostatic Pressure , Hypoalbuminemia/etiology , Hypoalbuminemia/physiopathology , Kidney/metabolism , Models, Biological , Nephrotic Syndrome/metabolism , Nephrotic Syndrome/physiopathology , Neurotransmitter Agents/metabolism , Proteinuria/etiology , Proteinuria/physiopathology , Renin-Angiotensin System , Risk Factors , Serum Albumin/metabolism , Sodium/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...