Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38168185

ABSTRACT

The current study in prostate cancer (PCa) focused on the genomic mechanisms at the cross-roads of pro-differentiation signals and the emergence of lineage plasticity. We explored an understudied cistromic mechanism involving RARγ's ability to govern AR cistrome-transcriptome relationships, including those associated with more aggressive PCa features. The RARγ complex in PCa cell models was enriched for canonical cofactors, as well as proteins involved in RNA processing and bookmarking. Identifying the repertoire of miR-96 bound and regulated gene targets, including those recognition elements marked by m6A, revealed their significant enrichment in the RARγ complex. RARγ significantly enhanced the AR cistrome, particularly in active enhancers and super-enhancers, and overlapped with the binding of bookmarking factors. Furthermore, RARγ expression led to nucleosome-free chromatin enriched with H3K27ac, and significantly enhanced the AR cistrome in G2/M cells. RARγ functions also antagonized the transcriptional actions of the lineage master regulator ONECUT2. Similarly, gene programs regulated by either miR-96 or antagonized by RARγ were enriched in alternative lineages and more aggressive PCa phenotypes. Together these findings reveal an under-investigated role for RARγ, modulated by miR-96, to bookmark enhancer sites during mitosis. These sites are required by the AR to promote transcriptional competence, and emphasize luminal differentiation, while antagonizing ONECUT2.

2.
Cancer Res Commun ; 3(4): 621-639, 2023 04.
Article in English | MEDLINE | ID: mdl-37082578

ABSTRACT

African American (AA) prostate cancer associates with vitamin D3 deficiency, but vitamin D receptor (VDR) genomic actions have not been investigated in this context. We undertook VDR proteogenomic analyses in European American (EA) and AA prostate cell lines and four clinical cohorts. Rapid immunoprecipitation mass spectrometry of endogenous protein (RIME) analyses revealed that nonmalignant AA RC43N prostate cells displayed the greatest dynamic protein content in the VDR complex. Likewise, in AA cells, Assay for Transposase-Accessible Chromatin using sequencing established greater 1α,25(OH)2D3-regulated chromatin accessibility, chromatin immunoprecipitation sequencing revealed significant enhancer-enriched VDR cistrome, and RNA sequencing identified the largest 1α,25(OH)2D3-dependent transcriptome. These VDR functions were significantly corrupted in the isogenic AA RC43T prostate cancer cells, and significantly distinct from EA cell models. We identified reduced expression of the chromatin remodeler, BAZ1A, in three AA prostate cancer cohorts as well as RC43T compared with RC43N. Restored BAZ1A expression significantly increased 1α,25(OH)2D3-regulated VDR-dependent gene expression in RC43T, but not HPr1AR or LNCaP cells. The clinical impact of VDR cistrome-transcriptome relationships were tested in three different clinical prostate cancer cohorts. Strikingly, only in AA patients with prostate cancer, the genes bound by VDR and/or associated with 1α,25(OH)2D3-dependent open chromatin (i) predicted progression from high-grade prostatic intraepithelial neoplasia to prostate cancer; (ii) responded to vitamin D3 supplementation in prostate cancer tumors; (iii) differentially responded to 25(OH)D3 serum levels. Finally, partial correlation analyses established that BAZ1A and components of the VDR complex identified by RIME significantly strengthened the correlation between VDR and target genes in AA prostate cancer only. Therefore, VDR transcriptional control is most potent in AA prostate cells and distorted through a BAZ1A-dependent control of VDR function. Significance: Our study identified that genomic ancestry drives the VDR complex composition, genomic distribution, and transcriptional function, and is disrupted by BAZ1A and illustrates a novel driver for AA prostate cancer.


Subject(s)
Prostatic Neoplasms , Receptors, Calcitriol , Male , Humans , Receptors, Calcitriol/genetics , Transcriptome/genetics , Black or African American/genetics , Prostatic Neoplasms/genetics , Chromatin/genetics , Chromosomal Proteins, Non-Histone/genetics
3.
Sci Rep ; 10(1): 20332, 2020 11 23.
Article in English | MEDLINE | ID: mdl-33230156

ABSTRACT

In prostate cancer (PCa), and many other hormone-dependent cancers, there is clear evidence for distorted transcriptional control as disease driver mechanisms. Defining which transcription factor (TF) and coregulators are altered and combine to become oncogenic drivers remains a challenge, in part because of the multitude of TFs and coregulators and the diverse genomic space on which they function. The current study was undertaken to identify which TFs and coregulators are commonly altered in PCa. We generated unique lists of TFs (n = 2662), coactivators (COA; n = 766); corepressors (COR; n = 599); mixed function coregulators (MIXED; n = 511), and to address the challenge of defining how these genes are altered we tested how expression, copy number alterations and mutation status varied across seven prostate cancer (PCa) cohorts (three of localized and four advanced disease). Testing of significant changes was undertaken by bootstrapping approaches and the most significant changes were identified. For one commonly and significantly altered gene were stably knocked-down expression and undertook cell biology experiments and RNA-Seq to identify differentially altered gene networks and their association with PCa progression risks. COAS, CORS, MIXED and TFs all displayed significant down-regulated expression (q.value < 0.1) and correlated with protein expression (r 0.4-0.55). In localized PCa, stringent expression filtering identified commonly altered TFs and coregulator genes, including well-established (e.g. ERG) and underexplored (e.g. PPARGC1A, encodes PGC1α). Reduced PPARGC1A expression significantly associated with worse disease-free survival in two cohorts of localized PCa. Stable PGC1α knockdown in LNCaP cells increased growth rates and invasiveness and RNA-Seq revealed a profound basal impact on gene expression (~ 2300 genes; FDR < 0.05, logFC > 1.5), but only modestly impacted PPARγ responses. GSEA analyses of the PGC1α transcriptome revealed that it significantly altered the AR-dependent transcriptome, and was enriched for epigenetic modifiers. PGC1α-dependent genes were overlapped with PGC1α-ChIP-Seq genes and significantly associated in TCGA with higher grade tumors and worse disease-free survival. These methods and data demonstrate an approach to identify cancer-driver coregulators in cancer, and that PGC1α expression is clinically significant yet underexplored coregulator in aggressive early stage PCa.


Subject(s)
Disease Progression , Prostatic Neoplasms/genetics , Transcription Factors/genetics , Transcriptome , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Cohort Studies , Disease-Free Survival , Down-Regulation/genetics , Gene Expression Regulation, Neoplastic , Gene Knockdown Techniques , Gene Regulatory Networks , Humans , Male , Mutation , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Prostatic Neoplasms/pathology , RNA-Seq
4.
Genome Announc ; 2(1)2014 Feb 13.
Article in English | MEDLINE | ID: mdl-24526640

ABSTRACT

We report the complete genome sequence of the Sungri/96 vaccine strain of peste des petits ruminants virus (PPRV). The whole-genome nucleotide sequence has 89 to 99% identity with the available PPRV genome sequences in the NCBI database. This study helps to understand the epidemiological and molecular characteristics of the Sungri/96 strain.

SELECTION OF CITATIONS
SEARCH DETAIL
...