Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
J Cancer Educ ; 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38687461

ABSTRACT

Site-specific multidisciplinary team (MDT) tumor boards are valuable resources for medical students, enabling them to familiarize themselves with the latest evidence-based cancer management strategies and observe effective teamwork in action. In this study, we looked at the awareness and perceptions of medical students about incorporating MDT tumor boards in the medical curriculum. A cross-sectional study was conducted among medical students from year 1 to year 5 at the Aga Khan University after exemption from ethical review committee. A 20-item self-administered questionnaire was used to evaluate the awareness and perceptions of medical students regarding MDT tumor boards. A total of 285 medical students participated in this study, with their mean age (± standard deviation) being 21.91 ± 1.67 years. A majority of 183 (64.2%) had no prior knowledge of the existence of a site-specific MDT tumor board for cancer management. Of the 285 students, 252 (88.4%) demonstrated sufficient awareness of the effectiveness of MDT tumor boards; similarly, 232 (81.4%) responded positively to the idea of mandatory tumor board rotations being incorporated into the undergraduate curriculum. No significant association was found between the student's year of study (χ2 = 6.03, p = 0.20) or gender (χ2 = 35, p = 0.84) and their perceptions of the effectiveness of MDT tumor boards. However, it was found that students who had prior knowledge of their existence had a stronger association with sufficient awareness (χ2 = 4.2, p = 0.04). The results indicate that while the majority of the medical students have no prior attendance or knowledge regarding MDT tumor boards, there is an overwhelming willingness among students to incorporate them into the medical curriculum.

3.
Hepatology ; 66(2): 466-480, 2017 08.
Article in English | MEDLINE | ID: mdl-28437865

ABSTRACT

Nonalcoholic steatohepatitis (NASH) is the most prevalent cause of chronic liver disease in the Western world. However, an optimum therapy for NASH is yet to be established, mandating more in-depth investigation into the molecular pathogenesis of NASH to identify novel regulatory molecules and develop targeted therapies. Here, we unravel a unique function of astrocyte elevated gene-1(AEG-1)/metadherin in NASH using a transgenic mouse with hepatocyte-specific overexpression of AEG-1 (Alb/AEG-1) and a conditional hepatocyte-specific AEG-1 knockout mouse (AEG-1ΔHEP ). Alb/AEG-1 mice developed spontaneous NASH whereas AEG-1ΔHEP mice were protected from high-fat diet (HFD)-induced NASH. Intriguingly, AEG-1 overexpression was observed in livers of NASH patients and wild-type (WT) mice that developed steatosis upon feeding HFD. In-depth molecular analysis unraveled that inhibition of peroxisome proliferator-activated receptor alpha activity resulting in decreased fatty acid ß-oxidation, augmentation of translation of fatty acid synthase resulting in de novo lipogenesis, and increased nuclear factor kappa B-mediated inflammation act in concert to mediate AEG-1-induced NASH. Therapeutically, hepatocyte-specific nanoparticle-delivered AEG-1 small interfering RNA provided marked protection from HFD-induced NASH in WT mice. CONCLUSION: AEG-1 might be a key molecule regulating initiation and progression of NASH. AEG-1 inhibitory strategies might be developed as a potential therapeutic intervention in NASH patients. (Hepatology 2017;66:466-480).


Subject(s)
Gene Expression Regulation , Membrane Glycoproteins/genetics , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/pathology , PPAR alpha/metabolism , Analysis of Variance , Animals , Biopsy, Needle , Cells, Cultured , Diet, High-Fat/adverse effects , Disease Models, Animal , Hepatocytes/cytology , Hepatocytes/metabolism , Humans , Immunohistochemistry , Mice , Mice, Inbred CBA , Mice, Transgenic , Random Allocation , Role
4.
Cancer Res ; 77(12): 3306-3316, 2017 06 15.
Article in English | MEDLINE | ID: mdl-28428278

ABSTRACT

SND1, a subunit of the miRNA regulatory complex RISC, has been implicated as an oncogene in hepatocellular carcinoma (HCC). In this study, we show that hepatocyte-specific SND1 transgenic mice (Alb/SND1 mice) develop spontaneous HCC with partial penetrance and exhibit more highly aggressive HCC induced by chemical carcinogenesis. Livers from Alb/SND1 mice exhibited a relative increase in inflammatory markers and spheroid-generating tumor-initiating cells (TIC). Mechanistic investigations defined roles for Akt and NF-κB signaling pathways in promoting TIC formation in Alb/SND1 mice. In human xenograft models of subcutaneous or orthotopic HCC, administration of the selective SND1 inhibitor 3', 5'-deoxythymidine bisphosphate (pdTp), inhibited tumor formation without effects on body weight or liver function. Our work establishes an oncogenic role for SND1 in promoting TIC formation and highlights pdTp as a highly selective SND1 inhibitor as a candidate therapeutic lead to treat advanced HCC. Cancer Res; 77(12); 3306-16. ©2017 AACR.


Subject(s)
Carcinoma, Hepatocellular/pathology , Liver Neoplasms/pathology , Neoplastic Stem Cells/pathology , Nuclear Proteins/metabolism , Oncogene Proteins/metabolism , Animals , Antineoplastic Agents/pharmacology , Blotting, Western , Cell Transformation, Neoplastic/genetics , Disease Models, Animal , Disease Progression , Endonucleases , Flow Cytometry , Fluorescent Antibody Technique , Humans , Immunohistochemistry , Mice , Mice, Transgenic , Polymerase Chain Reaction , Thymine Nucleotides/pharmacology
5.
FEBS Lett ; 590(16): 2700-8, 2016 08.
Article in English | MEDLINE | ID: mdl-27339400

ABSTRACT

Astrocyte-elevated gene-1 (AEG-1) positively regulates tumor progression and metastasis. Here, we document that AEG-1 upregulates transcription of the membrane protein tetraspanin 8 (TSPAN8). Knocking down TSPAN8 in AEG-1-overexpressing human hepatocellular carcinoma (HCC) cells markedly inhibited invasion and migration without affecting proliferation. TSPAN8 knockdown profoundly abrogated AEG-1-induced primary tumor and intrahepatic metastasis in an orthopic xenograft model in athymic nude mice. Coculture of TSPAN8 knockdown cells with human umbilical vein endothelial cells (HUVEC) markedly inhibited HUVEC tube formation indicating that inhibition of angiogenesis might cause reduction in primary tumor size. TSPAN8 inhibition might be a potential therapeutic strategy for metastatic HCC.


Subject(s)
Carcinoma, Hepatocellular/genetics , Cell Adhesion Molecules/genetics , Liver Neoplasms/genetics , Tetraspanins/biosynthesis , Animals , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic , Gene Knockdown Techniques , Human Umbilical Vein Endothelial Cells , Humans , Liver Neoplasms/pathology , Membrane Proteins , Mice , Neoplasm Invasiveness/genetics , Neoplasm Metastasis , RNA-Binding Proteins , Tetraspanins/genetics , Xenograft Model Antitumor Assays
6.
Oncotarget ; 6(28): 26266-77, 2015 Sep 22.
Article in English | MEDLINE | ID: mdl-26313006

ABSTRACT

Hepatocellular carcinoma (HCC) is a lethal malignancy with high mortality and poor prognosis. Oncogenic transcription factor Late SV40 Factor (LSF) plays an important role in promoting HCC. A small molecule inhibitor of LSF, Factor Quinolinone Inhibitor 1 (FQI1), significantly inhibited human HCC xenografts in nude mice without harming normal cells. Here we evaluated the efficacy of FQI1 and another inhibitor, FQI2, in inhibiting endogenous hepatocarcinogenesis. HCC was induced in a transgenic mouse with hepatocyte-specific overexpression of c-myc (Alb/c-myc) by injecting N-nitrosodiethylamine (DEN) followed by FQI1 or FQI2 treatment after tumor development. LSF inhibitors markedly decreased tumor burden in Alb/c-myc mice with a corresponding decrease in proliferation and angiogenesis. Interestingly, in vitro treatment of human HCC cells with LSF inhibitors resulted in mitotic arrest with an accompanying increase in CyclinB1. Inhibition of CyclinB1 induction by Cycloheximide or CDK1 activity by Roscovitine significantly prevented FQI-induced mitotic arrest. A significant induction of apoptosis was also observed upon treatment with FQI. These effects of LSF inhibition, mitotic arrest and induction of apoptosis by FQI1s provide multiple avenues by which these inhibitors eliminate HCC cells. LSF inhibitors might be highly potent and effective therapeutics for HCC either alone or in combination with currently existing therapies.


Subject(s)
Antineoplastic Agents/pharmacology , Benzodioxoles/pharmacology , Carcinoma, Hepatocellular/drug therapy , DNA-Binding Proteins/antagonists & inhibitors , Liver Neoplasms, Experimental/drug therapy , Quinolones/pharmacology , Transcription Factors/antagonists & inhibitors , Animals , Apoptosis/drug effects , Carcinoma, Hepatocellular/chemically induced , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Cell Cycle Checkpoints/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , DNA-Binding Proteins/metabolism , Diethylnitrosamine , Dose-Response Relationship, Drug , Genes, myc , Genetic Predisposition to Disease , Humans , Liver Neoplasms, Experimental/chemically induced , Liver Neoplasms, Experimental/genetics , Liver Neoplasms, Experimental/metabolism , Liver Neoplasms, Experimental/pathology , Mice, Transgenic , Mitosis/drug effects , Molecular Targeted Therapy , Neovascularization, Pathologic , Phenotype , Signal Transduction/drug effects , Time Factors , Transcription Factors/metabolism
7.
Bioconjug Chem ; 26(8): 1651-61, 2015 Aug 19.
Article in English | MEDLINE | ID: mdl-26079152

ABSTRACT

Hepatocellular carcinoma (HCC) is a fatal cancer with no effective therapy. Astrocyte elevated gene-1 (AEG-1) plays a pivotal role in hepatocarcinogenesis and inhibits retinoic acid-induced gene expression and cell death. The combination of a lentivirus expressing AEG-1 shRNA and all-trans retinoic acid (ATRA) profoundly and synergistically inhibited subcutaneous human HCC xenografts in nude mice. We have now developed liver-targeted nanoplexes by conjugating poly(amidoamine) (PAMAM) dendrimers with polyethylene glycol (PEG) and lactobionic acid (Gal) (PAMAM-PEG-Gal) which were complexed with AEG-1 siRNA (PAMAM-AEG-1si). The polymer conjugate was characterized by (1)H-NMR, MALDI, and mass spectrometry; and optimal nanoplex formulations were characterized for surface charge, size, and morphology. Orthotopic xenografts of human HCC cell QGY-7703 expressing luciferase (QGY-luc) were established in the livers of athymic nude mice and tumor development was monitored by bioluminescence imaging (BLI). Tumor-bearing mice were treated with PAMAM-siCon, PAMAM-siCon+ATRA, PAMAM-AEG-1si, and PAMAM-AEG-1si+ATRA. In the control group the tumor developed aggressively. ATRA showed little effect due to high AEG-1 levels in QGY-luc cells. PAMAM-AEG-1si showed significant reduction in tumor growth, and the combination of PAMAM-AEG-1si+ATRA showed profound and synergistic inhibition so that the tumors were almost undetectable by BLI. A marked decrease in AEG-1 level was observed in tumor samples treated with PAMAM-AEG-1si. The group treated with PAMAM-AEG-1si+ATRA nanoplexes showed increased necrosis, inhibition of proliferation, and increased apoptosis when compared to other groups. Liver is an ideal organ for RNAi therapy and ATRA is an approved anticancer agent. Our exciting observations suggest that the combinatorial approach might be an effective way to combat HCC.


Subject(s)
Carcinoma, Hepatocellular/therapy , Cell Adhesion Molecules/antagonists & inhibitors , Liver Neoplasms/therapy , Nanoparticles/administration & dosage , RNA, Small Interfering/genetics , Tretinoin/pharmacology , Animals , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Cell Adhesion Molecules/genetics , Cell Proliferation/drug effects , Combined Modality Therapy , Genetic Therapy , Humans , Liver/drug effects , Liver/metabolism , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Membrane Proteins , Mice , Mice, Inbred C57BL , Mice, Nude , Nanoparticles/chemistry , RNA-Binding Proteins , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
8.
J Biol Chem ; 290(29): 18227-18236, 2015 Jul 17.
Article in English | MEDLINE | ID: mdl-26070567

ABSTRACT

Astrocyte elevated gene-1 (AEG-1), also known as MTDH (metadherin) or LYRIC, is an established oncogene. However, the physiological function of AEG-1 is not known. To address this question, we generated an AEG-1 knock-out mouse (AEG-1KO) and characterized it. Although AEG-1KO mice were viable and fertile, they were significantly leaner with prominently less body fat and lived significantly longer compared with wild type (WT). When fed a high fat and cholesterol diet (HFD), WT mice rapidly gained weight, whereas AEG-1KO mice did not gain weight at all. This phenotype of AEG-1KO mice is due to decreased fat absorption from the intestines, not because of decreased fat synthesis or increased fat consumption. AEG-1 interacts with retinoid X receptor (RXR) and inhibits RXR function. In enterocytes of AEG-1KO mice, we observed increased activity of RXR heterodimer partners, liver X receptor and peroxisome proliferator-activated receptor-α, key inhibitors of intestinal fat absorption. Inhibition of fat absorption in AEG-1KO mice was further augmented when fed an HFD providing ligands to liver X receptor and peroxisome proliferator-activated receptor-α. Our studies reveal a novel role of AEG-1 in regulating nuclear receptors controlling lipid metabolism. AEG-1 may significantly modulate the effects of HFD and thereby function as a unique determinant of obesity.


Subject(s)
Intestinal Mucosa/metabolism , Lipid Metabolism , Liver/metabolism , Membrane Proteins/metabolism , Weight Gain , Adipose Tissue/metabolism , Animals , Homeostasis , Liver X Receptors , Male , Membrane Proteins/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Obesity/genetics , Obesity/metabolism , Orphan Nuclear Receptors/metabolism , Peroxisome Proliferator-Activated Receptors/metabolism , RNA-Binding Proteins , Retinoid X Receptors/metabolism
9.
J Biol Chem ; 290(25): 15549-15558, 2015 Jun 19.
Article in English | MEDLINE | ID: mdl-25944909

ABSTRACT

Non-thyroidal illness syndrome (NTIS), characterized by low serum 3,5,3'-triiodothyronine (T3) with normal l-thyroxine (T4) levels, is associated with malignancy. Decreased activity of type I 5'-deiodinase (DIO1), which converts T4 to T3, contributes to NTIS. T3 binds to thyroid hormone receptor, which heterodimerizes with retinoid X receptor (RXR) and regulates transcription of target genes, such as DIO1. NF-κB activation by inflammatory cytokines inhibits DIO1 expression. The oncogene astrocyte elevated gene-1 (AEG-1) inhibits RXR-dependent transcription and activates NF-κB. Here, we interrogated the role of AEG-1 in NTIS in the context of hepatocellular carcinoma (HCC). T3-mediated gene regulation was analyzed in human HCC cells, with overexpression or knockdown of AEG-1, and primary hepatocytes from AEG-1 transgenic (Alb/AEG-1) and AEG-1 knock-out (AEG-1KO) mice. Serum T3 and T4 levels were checked in Alb/AEG-1 mice and human HCC patients. AEG-1 and DIO1 levels in human HCC samples were analyzed by immunohistochemistry. AEG-1 inhibited T3-mediated gene regulation in human HCC cells and mouse hepatocytes. AEG-1 overexpression repressed and AEG-1 knockdown induced DIO1 expression. An inverse correlation was observed between AEG-1 and DIO1 levels in human HCC patients. Low T3 with normal T4 was observed in the sera of HCC patients and Alb/AEG-1 mice. Inhibition of co-activator recruitment to RXR and activation of NF-κB were identified to play a role in AEG-1-mediated down-regulation of DIO1. AEG-1 thus might play a role in NTIS associated with HCC and other cancers.


Subject(s)
Carcinoma, Hepatocellular/metabolism , Cell Adhesion Molecules/metabolism , Euthyroid Sick Syndromes/metabolism , Liver Neoplasms/metabolism , Membrane Glycoproteins/metabolism , Neoplasm Proteins/metabolism , Animals , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Cell Adhesion Molecules/genetics , Cell Line, Tumor , Down-Regulation/genetics , Euthyroid Sick Syndromes/etiology , Euthyroid Sick Syndromes/genetics , Gene Expression Regulation, Enzymologic/genetics , Gene Expression Regulation, Neoplastic/genetics , HEK293 Cells , Hepatocytes/metabolism , Hepatocytes/pathology , Humans , Iodide Peroxidase/biosynthesis , Iodide Peroxidase/genetics , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Membrane Glycoproteins/genetics , Membrane Proteins , Mice , Mice, Knockout , NF-kappa B/genetics , NF-kappa B/metabolism , Neoplasm Proteins/genetics , RNA-Binding Proteins , Retinoid X Receptors/genetics , Retinoid X Receptors/metabolism , Triiodothyronine/genetics , Triiodothyronine/metabolism
10.
Hepat Oncol ; 2(3): 303-312, 2015.
Article in English | MEDLINE | ID: mdl-26798451

ABSTRACT

AEG-1 is an oncogene that is overexpressed in all cancers, including hepatocellular carcinoma. AEG-1 plays a seminal role in promoting cancer development and progression by augmenting proliferation, invasion, metastasis, angiogenesis and chemoresistance, all hallmarks of aggressive cancer. AEG-1 mediates its oncogenic function predominantly by interacting with various protein complexes. AEG-1 acts as a scaffold protein, activating multiple protumorigenic signal transduction pathways, such as MEK/ERK, PI3K/Akt, NF-κB and Wnt/ß-catenin while regulating gene expression at transcriptional, post-transcriptional and translational levels. Our recent studies document that AEG-1 is fundamentally required for activation of inflammation. A comprehensive and convincing body of data currently points to AEG-1 as an essential component critical to the onset and progression of cancer. The present review describes the current knowledge gleaned from patient and experimental studies as well as transgenic and knockout mouse models, on the impact of AEG-1 on hepatocarcinogenesis.

11.
Hepatology ; 61(3): 915-29, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25065684

ABSTRACT

UNLABELLED: Astrocyte elevated gene-1 (AEG-1) and c-Myc are overexpressed in human hepatocellular carcinoma (HCC) functioning as oncogenes. AEG-1 is transcriptionally regulated by c-Myc, and AEG-1 itself induces c-Myc by activating the Wnt/ß-catenin-signaling pathway. We now document the cooperation of AEG-1 and c-Myc in promoting hepatocarcinogenesis by analyzing hepatocyte-specific transgenic mice expressing either AEG-1 (albumin [Alb]/AEG-1), c-Myc (Alb/c-Myc), or both (Alb/AEG-1/c-Myc). Wild-type and Alb/AEG-1 mice did not develop spontaneous HCC. Alb/c-Myc mice developed spontaneous HCC without distant metastasis, whereas Alb/AEG-1/c-Myc mice developed highly aggressive HCC with frank metastasis to the lungs. Induction of carcinogenesis by N-nitrosodiethylamine significantly accelerated the kinetics of tumor formation in all groups. However, in Alb/AEG-1/c-Myc, the effect was markedly pronounced with lung metastasis. In vitro analysis showed that Alb/AEG-1/c-Myc hepatocytes acquired increased proliferation and transformative potential with sustained activation of prosurvival and epithelial-mesenchymal transition-signaling pathways. RNA-sequencing analysis identified a unique gene signature in livers of Alb/AEG-1/c-Myc mice that was not observed when either AEG-1 or c-Myc was overexpressed. Specifically, Alb/AEG-1/c-Myc mice overexpressed maternally imprinted noncoding RNAs (ncRNAs), such as Rian, Meg-3, and Mirg, which are implicated in hepatocarcinogenesis. Knocking down these ncRNAs significantly inhibited proliferation and invasion by Alb/AEG-1/c-Myc hepatocytes. CONCLUSION: Our studies reveal a novel cooperative oncogenic effect of AEG-1 and c-Myc that might explain the mechanism of aggressive HCC. Alb/AEG-1/c-Myc mice provide a useful model to understand the molecular mechanism of cooperation between these two oncogenes and other molecules involved in hepatocarcinogenesis. This model might also be of use for evaluating novel therapeutic strategies targeting HCC.


Subject(s)
Liver Neoplasms, Experimental/etiology , Membrane Proteins/physiology , Proto-Oncogene Proteins c-myc/physiology , Albumins/analysis , Animals , Carcinogenesis , Cells, Cultured , Epithelial-Mesenchymal Transition , Liver Neoplasms, Experimental/pathology , Lung Neoplasms/secondary , Membrane Proteins/analysis , Mice , Mice, Transgenic , Proto-Oncogene Proteins c-myc/analysis , RNA-Binding Proteins
12.
Cancer Res ; 74(21): 6184-93, 2014 Nov 01.
Article in English | MEDLINE | ID: mdl-25193383

ABSTRACT

Activation of the oncogene AEG-1 (MTDH, LYRIC) has been implicated recently in the development of hepatocellular carcinoma (HCC). In mice, HCC can be initiated by exposure to the carcinogen DEN, which has been shown to rely upon activation of NF-κB in liver macrophages. Because AEG-1 is an essential component of NF-κB activation, we interrogated the susceptibility of mice lacking the AEG-1 gene to DEN-induced hepatocarcinogenesis. AEG-1-deficient mice displayed resistance to DEN-induced HCC and lung metastasis. No difference was observed in the response to growth factor signaling or activation of AKT, ERK, and ß-catenin, compared with wild-type control animals. However, AEG-1-deficient hepatocytes and macrophages exhibited a relative defect in NF-κB activation. Mechanistic investigations showed that IL6 production and STAT3 activation, two key mediators of HCC development, were also deficient along with other biologic and epigenetics findings in the tumor microenvironment, confirming that AEG-1 supports an NF-κB-mediated inflammatory state that drives HCC development. Overall, our findings offer in vivo proofs that AEG-1 is essential for NF-κB activation and hepatocarcinogenesis, and they reveal new roles for AEG-1 in shaping the tumor microenvironment for HCC development.


Subject(s)
Carcinoma, Hepatocellular/genetics , Cell Adhesion Molecules/genetics , Liver Neoplasms/genetics , Neoplasms, Experimental/genetics , Animals , Carcinogenesis/genetics , Carcinoma, Hepatocellular/chemically induced , Carcinoma, Hepatocellular/pathology , Drug Resistance, Neoplasm/genetics , Gene Deletion , Gene Expression Regulation, Neoplastic , Hepatocytes/metabolism , Hepatocytes/pathology , Humans , Liver Neoplasms/chemically induced , Liver Neoplasms/pathology , Lung Neoplasms/chemically induced , Lung Neoplasms/secondary , Membrane Proteins , Mice , NF-kappa B , Neoplasms, Experimental/chemically induced , RNA-Binding Proteins , Signal Transduction/genetics
13.
Cancer Res ; 74(16): 4364-77, 2014 Aug 15.
Article in English | MEDLINE | ID: mdl-25125681

ABSTRACT

Retinoid X receptor (RXR) regulates key cellular responses such as cell growth and development, and this regulation is frequently perturbed in various malignancies, including hepatocellular carcinoma (HCC). However, the molecule(s) that physically govern this deregulation are mostly unknown. Here, we identified RXR as an interacting partner of astrocyte-elevated gene-1 (AEG-1)/metadherin (MTDH), an oncogene upregulated in all cancers. Upon interaction, AEG-1 profoundly inhibited RXR/retinoic acid receptor (RAR)-mediated transcriptional activation. Consequently, AEG-1 markedly protected HCC and acute myelogenous leukemia (AML) cells from retinoid- and rexinoid-induced cell death. In nontumorigenic cells and primary hepatocytes, AEG-1/RXR colocalizes in the nucleus in which AEG-1 interferes with recruitment of transcriptional coactivators to RXR, preventing transcription of target genes. In tumor cells and AEG-1 transgenic hepatocytes, overexpressed AEG-1 entraps RXR in cytoplasm, precluding its nuclear translocation. In addition, ERK, activated by AEG-1, phosphorylates RXR that leads to its functional inactivation and attenuation of ligand-dependent transactivation. In nude mice models, combination of all-trans retinoic acid (ATRA) and AEG-1 knockdown synergistically inhibited growth of human HCC xenografts. The present study establishes AEG-1 as a novel homeostatic regulator of RXR and RXR/RAR that might contribute to hepatocarcinogenesis. Targeting AEG-1 could sensitize patients with HCC and AML to retinoid- and rexinoid-based therapeutics.


Subject(s)
Cell Adhesion Molecules/genetics , Cell Adhesion Molecules/metabolism , Retinoid X Receptors/metabolism , Retinoids/antagonists & inhibitors , Animals , Cell Adhesion Molecules/antagonists & inhibitors , Cell Differentiation/physiology , Gene Knockdown Techniques , HEK293 Cells , Heterografts , Humans , Liver Neoplasms/drug therapy , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Membrane Proteins , Mice , Mice, Inbred C57BL , Mice, Inbred CBA , Mice, Nude , Mice, Transgenic , Phosphorylation , Promoter Regions, Genetic , RNA-Binding Proteins , Retinoid X Receptors/antagonists & inhibitors , Retinoid X Receptors/genetics , Retinoids/metabolism , Signal Transduction , Transfection , Tretinoin/pharmacology , Up-Regulation
14.
J Hepatocell Carcinoma ; 1: 9-19, 2014.
Article in English | MEDLINE | ID: mdl-27508172

ABSTRACT

Hepatocellular carcinoma (HCC) is a vicious and highly vascular cancer with a dismal prognosis. It is a life-threatening illness worldwide that ranks fifth in terms of cancer prevalence and third in cancer deaths. Most patients are diagnosed at an advanced stage by which time conventional therapies are no longer effective. Targeted molecular therapies, such as the multikinase inhibitor sorafenib, provide a modest increase in survival for advanced HCC patients and display significant toxicity. Thus, there is an immense need to identify novel regulators of HCC that might be targeted effectively. The insulin-like growth factor (IGF) axis is commonly abnormal in HCC. Upon activation, the IGF axis controls metabolism, tissue homeostasis, and survival. Insulin-like growth factor-binding protein 7 (IGFBP7) is a secreted protein of a family of low-affinity IGF-binding proteins termed "IGFBP-related proteins" that have been identified as a potential tumor suppressor in HCC. IGFBP7 has been implicated in regulating cellular proliferation, senescence, and angiogenesis. In this review, we provide a comprehensive discussion of the role of IGFBP7 in HCC and the potential use of IGFBP7 as a novel biomarker for drug resistance and as an effective therapeutic strategy.

15.
Mol Ther ; 21(4): 758-66, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23319057

ABSTRACT

Hepatocellular carcinoma (HCC) is a highly fatal disease mandating development of novel, targeted therapies to elicit prolonged survival benefit to the patients. Insulin-like growth factor-binding protein-7 (IGFBP7), a secreted protein belonging to the IGFBP family, functions as a potential tumor suppressor for HCC. In the present study, we evaluated the therapeutic efficacy of a replication-incompetent adenovirus expressing IGFBP7 (Ad.IGFBP7) in human HCC. Ad.IGFBP7 profoundly inhibited viability and induced apoptosis in multiple human HCC cell lines by inducing reactive oxygen species (ROS) and activating a DNA damage response (DDR) and p38 MAPK. In orthotopic xenograft models of human HCC in athymic nude mice, intravenous administration of Ad.IGFBP7 profoundly inhibited primary tumor growth and intrahepatic metastasis. In a nude mice subcutaneous model, xenografts from human HCC cells were established in both flanks and only left-sided tumors received intratumoral injection of Ad.IGFBP7. Growth of both left-sided injected tumors and right-sided uninjected tumors were markedly inhibited by Ad.IGFBP7 with profound suppression of angiogenesis. These findings indicate that Ad.IGFBP7 might be a potent therapeutic eradicating both primary HCC and distant metastasis and might be an effective treatment option for terminal HCC patients.


Subject(s)
Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/therapy , Insulin-Like Growth Factor Binding Proteins/metabolism , Liver Neoplasms/metabolism , Liver Neoplasms/therapy , Adenoviridae/genetics , Animals , Carcinoma, Hepatocellular/genetics , Humans , Insulin-Like Growth Factor Binding Proteins/genetics , Liver Neoplasms/genetics , Male , Mice , Mice, Nude , Reactive Oxygen Species/metabolism , Xenograft Model Antitumor Assays
16.
Am J Cancer Res ; 2(3): 269-85, 2012.
Article in English | MEDLINE | ID: mdl-22679558

ABSTRACT

The transcription factor LSF (Late SV40 Factor), also known as TFCP2, belongs to the LSF/CP2 family related to Grainyhead family of proteins and is involved in many biological events, including regulation of cellular and viral promoters, cell cycle, DNA synthesis, cell survival and Alzheimer's disease. Our recent studies establish an oncogenic role of LSF in Hepatocellular carcinoma (HCC). LSF overexpression is detected in human HCC cell lines and in more than 90% cases of human HCC patients, compared to normal hepatocytes and liver, and its expression level showed significant correlation with the stages and grades of the disease. Forced overexpression of LSF in less aggressive HCC cells resulted in highly aggressive, angiogenic and multi-organ metastatic tumors in nude mice. Conversely, inhibition of LSF significantly abrogated growth and metastasis of highly aggressive HCC cells in nude mice. Microarray studies revealed that as a transcription factor LSF modulated specific genes regulating invasion, angiogenesis, chemoresistance and senescence. LSF transcriptionally regulates thymidylate synthase (TS) gene, thus contributing to cell cycle regulation and chemoresistance. Our studies identify a network of proteins, including osteopontin (OPN), Matrix metalloproteinase-9 (MMP-9), c-Met and complement factor H (CFH), that are directly regulated by LSF and play important role in LSF-induced hepatocarcinogenesis. A high throughput screening identified small molecule inhibitors of LSF DNA binding and the prototype of these molecules, Factor Quinolinone inhibitor 1 (FQI1), profoundly inhibited cell viability and induced apoptosis in human HCC cells without exerting harmful effects to normal immortal human hepatocytes and primary mouse hepatocytes. In nude mice xenograft studies, FQI1 markedly inhibited growth of human HCC xenografts as well as angiogenesis without exerting any toxicity. These studies establish a key role of LSF in hepatocarcinogenesis and usher in a novel therapeutic avenue for HCC, an invariably fatal disease.

17.
Hepatology ; 56(5): 1782-91, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22689379

ABSTRACT

UNLABELLED: Astrocyte elevated gene-1 (AEG-1) is a key contributor to hepatocellular carcinoma (HCC) development and progression. To enhance our understanding of the role of AEG-1 in hepatocarcinogenesis, a transgenic mouse with hepatocyte-specific expression of AEG-1 (Alb/AEG1) was developed. Treating Alb/AEG-1, but not wild-type (WT) mice, with N-nitrosodiethylamine resulted in multinodular HCC with steatotic features and associated modulation of expression of genes regulating invasion, metastasis, angiogenesis, and fatty acid synthesis. Hepatocytes isolated from Alb/AEG-1 mice displayed profound resistance to chemotherapeutics and growth factor deprivation with activation of prosurvival signaling pathways. Alb/AEG-1 hepatocytes also exhibited marked resistance toward senescence, which correlated with abrogation of activation of a DNA damage response. Conditioned media from Alb/AEG-1 hepatocytes induced marked angiogenesis with elevation in several coagulation factors. Among these factors, AEG-1 facilitated the association of factor XII (FXII) messenger RNA with polysomes, resulting in increased translation. Short interfering RNA-mediated knockdown of FXII resulted in profound inhibition of AEG-1-induced angiogenesis. CONCLUSION: We uncovered novel aspects of AEG-1 functions, including induction of steatosis, inhibition of senescence, and activation of the coagulation pathway to augment aggressive hepatocarcinogenesis. The Alb/AEG-1 mouse provides an appropriate model to scrutinize the molecular mechanism of hepatocarcinogenesis and to evaluate the efficacy of novel therapeutic strategies targeting HCC.


Subject(s)
Carcinoma, Hepatocellular/genetics , Cell Adhesion Molecules/genetics , Cell Transformation, Neoplastic/genetics , Disease Models, Animal , Liver Neoplasms/genetics , Neovascularization, Pathologic/genetics , Animals , Antineoplastic Agents/pharmacology , Carcinoma, Hepatocellular/chemically induced , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Cell Adhesion Molecules/metabolism , Cells, Cultured , Cellular Senescence/genetics , Diethylnitrosamine , Doxorubicin/pharmacology , Drug Resistance, Neoplasm/genetics , Factor XII/genetics , Factor XII/metabolism , Fatty Acids/biosynthesis , Fatty Liver/genetics , Fatty Liver/pathology , Fluorouracil/pharmacology , Gene Expression Profiling , Gene Knockdown Techniques , Hepatocytes/drug effects , Hepatocytes/metabolism , Humans , Liver/blood supply , Liver/metabolism , Liver/pathology , Liver Neoplasms/chemically induced , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Male , Membrane Proteins , Mice , Mice, Transgenic , Neoplasm Invasiveness/genetics , Neoplasm Metastasis , Oligonucleotide Array Sequence Analysis , Polyribosomes , RNA, Messenger/metabolism , RNA-Binding Proteins
18.
Proc Natl Acad Sci U S A ; 109(12): 4503-8, 2012 Mar 20.
Article in English | MEDLINE | ID: mdl-22396589

ABSTRACT

Hepatocellular carcinoma (HCC) is the fifth most common cancer worldwide. Despite the prevalence of HCC, there is no effective, systemic treatment. The transcription factor LSF is a promising protein target for chemotherapy; it is highly expressed in HCC patient samples and cell lines, and promotes oncogenesis in rodent xenograft models of HCC. Here, we identify small molecules that effectively inhibit LSF cellular activity. The lead compound, factor quinolinone inhibitor 1 (FQI1), inhibits LSF DNA-binding activity both in vitro, as determined by electrophoretic mobility shift assays, and in cells, as determined by ChIP. Consistent with such inhibition, FQI1 eliminates transcriptional stimulation of LSF-dependent reporter constructs. FQI1 also exhibits antiproliferative activity in multiple cell lines. In LSF-overexpressing cells, including HCC cells, cell death is rapidly induced; however, primary or immortalized hepatocytes are unaffected by treatment with FQI1. The highly concordant structure-activity relationship of a panel of 23 quinolinones strongly suggests that the growth inhibitory activity is due to a single biological target or family. Coupled with the striking agreement between the concentrations required for antiproliferative activity (GI(50)s) and for inhibition of LSF transactivation (IC(50)s), we conclude that LSF is the specific biological target of FQIs. Based on these in vitro results, we tested the efficacy of FQI1 in inhibiting HCC tumor growth in a mouse xenograft model. As a single agent, tumor growth was dramatically inhibited with no observable general tissue cytotoxicity. These findings support the further development of LSF inhibitors for cancer chemotherapy.


Subject(s)
Benzodioxoles/pharmacology , Carcinoma, Hepatocellular/metabolism , DNA-Binding Proteins/metabolism , Gene Expression Regulation, Neoplastic , Liver Neoplasms/metabolism , Quinolones/pharmacology , Transcription Factors/metabolism , Animals , Cell Proliferation , Cell Survival , Drug Screening Assays, Antitumor , Genes, Reporter , Hepatocytes/cytology , Humans , Inhibitory Concentration 50 , Mice , Models, Chemical , NIH 3T3 Cells , Neoplasm Transplantation , Oncogenes , Structure-Activity Relationship , Transcriptional Activation
19.
J Biol Chem ; 287(5): 3425-32, 2012 Jan 27.
Article in English | MEDLINE | ID: mdl-22167195

ABSTRACT

The transcription factor late SV40 factor (LSF) is overexpressed in human hepatocellular carcinoma (HCC) fostering a highly aggressive and metastatic phenotype. Angiogenesis is an essential component of cancer aggression and metastasis and HCC is a highly aggressive and angiogenic cancer. In the present studies, we analyzed the molecular mechanism of LSF-induced angiogenesis in HCC. Employing human umbilical vein endothelial cells (HUVEC) differentiation assay and chicken chorioallantoic membrane (CAM) assay we document that stable LSF overexpression augments and stable dominant negative inhibition of LSF (LSFdn) abrogates angiogenesis by human HCC cells. A quest for LSF-regulated factors contributing to angiogenesis, by chromatin immunoprecipitation-on-chip (ChIP-on-chip) assay, identified matrix metalloproteinase-9 (MMP-9) as a direct target of LSF. MMP-9 expression and enzymatic activity were higher in LSF-overexpressing cells and lower in LSFdn-expressing cells. Deletion mutation analysis identified the LSF-responsive regions in the MMP-9 promoter and ChIP assay confirmed LSF binding to the MMP-9 promoter. Inhibition of MMP-9 significantly abrogated LSF-induced angiogenesis as well as in vivo tumorigenesis, thus reinforcing the role of MMP-9 in facilitating LSF function. The present findings identify a novel target of LSF contributing to its oncogenic properties.


Subject(s)
Carcinoma, Hepatocellular/metabolism , DNA-Binding Proteins/metabolism , Gene Expression Regulation, Enzymologic , Matrix Metalloproteinase 9/biosynthesis , Neoplasm Proteins/metabolism , Neovascularization, Pathologic/metabolism , Response Elements , Transcription Factors/metabolism , Animals , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/nursing , Cell Line, Tumor , Chick Embryo , Chorioallantoic Membrane/metabolism , DNA-Binding Proteins/genetics , Humans , Mice , Mice, Nude , Neoplasm Proteins/genetics , Neoplasm Transplantation , Neovascularization, Pathologic/genetics , Neovascularization, Pathologic/pathology , Neovascularization, Physiologic/genetics , Sequence Deletion , Transcription Factors/genetics , Transplantation, Heterologous , Up-Regulation/genetics
20.
J Clin Invest ; 116(3): 703-14, 2006 Mar.
Article in English | MEDLINE | ID: mdl-16470246

ABSTRACT

IFN regulatory factor 4-binding (IRF-4-binding) protein (IBP) is a novel type of activator of Rho GTPases that is recruited to the immunological synapse upon TCR stimulation. Here we demonstrate that loss of IBP leads to the spontaneous development of a systemic autoimmune disorder characterized by the accumulation of effector/memory T cells and IgG+ B cells, profound hypergammaglobulinemia, and autoantibody production. Similar to human SLE, this syndrome primarily affects females. T cells from IBP-deficient mice are resistant to death in vitro as well as in vivo and exhibit selective defects in effector function. In the absence of IBP, T cells respond suboptimally to TCR engagement, as demonstrated by diminished ERK1/2 activation, decreased c-Fos induction, impaired immunological synapse formation, and defective actin polymerization. Transduction of IBP-deficient T cells with a WT IBP protein, but not with an IBP mutant lacking the Dbl-like domain required for Rho GTPase activation, rescues the cytoskeletal defects exhibited by these cells. Collectively, these findings indicate that IBP, a novel regulator of Rho GTPases, is required for optimal T cell effector function, lymphocyte homeostasis, and the prevention of systemic autoimmunity.


Subject(s)
CD4-Positive T-Lymphocytes/physiology , Interferon Regulatory Factors/deficiency , Interferon Regulatory Factors/genetics , Interferon Regulatory Factors/metabolism , Lupus Erythematosus, Systemic/genetics , Lupus Erythematosus, Systemic/immunology , Animals , Apoptosis/genetics , Cells, Cultured , DNA-Binding Proteins , Disease Models, Animal , Female , Guanine Nucleotide Exchange Factors , Immunologic Memory/genetics , Mice , Mice, Inbred C57BL , Nuclear Proteins
SELECTION OF CITATIONS
SEARCH DETAIL
...