Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 65
Filter
Add more filters










Publication year range
1.
Int J Syst Evol Microbiol ; 73(10)2023 Oct.
Article in English | MEDLINE | ID: mdl-37787389

ABSTRACT

A Gram-stain-negative, aerobic, short rod-shaped and motile bacterial strain, designated MAH-33T, was isolated from rhizospheric soil of eggplant. The colonies were observed to be yellow-coloured, smooth, spherical and 0.1-0.3 mm in diameter when grown on TSA agar medium for 2 days. Strain MAH-33T was found to be able to grow at 10-40 °C, at pH 5.0-10.0 and at 0-3.0 % NaCl (w/v). The strain was found to be positive for both oxidase and catalase tests. The strain was positive for hydrolysis of tyrosine and aesculin. According to the 16S rRNA gene sequence comparisons, the isolate was identified as a member of the genus Sphingobium and to be closely related to Sphingobium quisquiliarum P25T (98.4 % similarity), Sphingobium mellinum WI4T (97.8 %), Sphingobium fuliginis TKPT (97.3 %) and Sphingobium herbicidovorans NBRC 16415T (96.9 %). The novel strain MAH-33T has a draft genome size of 3 908 768 bp (28 contigs), annotated with 3689 protein-coding genes, 45 tRNA and three rRNA genes. The average nucleotide identity and digital DNA-DNA hybridization values between strain MAH-33T and closely related type strains were in the range of 79.8-81.6 % and 23.2-24.5 %, respectively. The genomic DNA G+C content was determined to be 62.2 %. The predominant isoprenoid quinone was ubiquinone 10. The major fatty acids were identified as C16 : 0 and summed feature 8 (C18 : 1 ω7c and/or C18 : 1 ω6c). The polar lipids identified in strain MAH-33T were phosphatidylethanolamine, diphosphatidylglycerol, phosphatidylglycerol, sphingoglycolipid, phosphatidylcholine; one unknown phospholipid and one unknown lipid. On the basis of digital DNA-DNA hybridization, ANI value, genotypic analysis, chemotaxonomic and physiological data, strain MAH-33T represents a novel species within the genus Sphingobium, for which the name Sphingobium agri sp. nov. is proposed, with MAH-33T (=KACC 19973T = CGMCC 1.16609T) as the type strain.


Subject(s)
Fatty Acids , Solanum melongena , Fatty Acids/chemistry , Solanum melongena/genetics , RNA, Ribosomal, 16S/genetics , DNA, Bacterial/genetics , Base Composition , Phylogeny , Bacterial Typing Techniques , Sequence Analysis, DNA , Phospholipids/chemistry , Soil Microbiology
2.
Curr Microbiol ; 80(8): 264, 2023 Jun 29.
Article in English | MEDLINE | ID: mdl-37386175

ABSTRACT

Two novel bacterial strains, designated as SM33T and NSE70-1T, were isolated from wet soil in South Korea. To get the taxonomic positions, the strains were characterized. The genomic information (both 16S rRNA gene and draft genome sequence analysis) show that both novel isolates (SM33T and NSE70-1T) belong to the genus Sphingomonas. SM33T share the highest 16s rRNA gene similarity (98.2%) with Sphingomonas sediminicola Dae20T. In addition, NSE70-1T show 96.4% 16s rRNA gene similarity with Sphingomonas flava THG-MM5T. The draft genome of strains SM33T and NSE70-1T consist of a circular chromosome of 3,033,485 and 2,778,408 base pairs with DNA G+C content of 63.9, and 62.5%, respectively. Strains SM33T and NSE70-1T possessed the ubiquinone Q-10 as the major quinone, and a fatty acid profile with C16:0, C18:1 2-OH, C16:1 ω7c/C16:1 ω6c (summed feature 3) and C18:1 ω7c/C18:1 ω6c (summed feature 8) as major fatty acids. The major polar lipids of SM33T and NSE70-1T were phosphatidylglycerol, diphosphatidylglycerol, phosphatidylethanolamine, sphingoglycolipid and phosphatidylcholine, respectively. Moreover, genomic, physiological, and biochemical results allowed the phenotypic and genotypic differentiation of strains SM33T and NSE70-1T from their closest and other species of the genus Sphingomonas with validly published names. Therefore, the SM33T and NSE70-1T represent novel species of the genus Sphingomonas, for which the name Sphingomonas telluris sp. nov. (type strain SM33T = KACC 22222T = LMG 32193T), and Sphingomonas caseinilyticus (type strain NSE70-1T = KACC 22411T = LMG 32495T).


Subject(s)
Sphingomonas , RNA, Ribosomal, 16S/genetics , Sphingomonas/genetics , Fatty Acids , Genomics , Genotype
3.
Article in English | MEDLINE | ID: mdl-37289495

ABSTRACT

A novel yellow-pigmented catalase- and oxidase-positive bacterial strain (designated NA20T) was isolated from wetland soil and characterized. Results of 16S rRNA and draft genome sequence analysis placed strain NA20T within the genus Terrimonas of the family Chitinophagaceae. Strain NA20T showed ≤97.1 % sequence similarity to members of the genus Terrimonas and the highest sequence similarity was found to Terrimonas lutea DYT (97.1%). The draft genome of strain NA20T had a total length of 7 144 125 base pairs. A total of 5659 genes were identified, of which 5613 were CDS and 46 RNA genes were assigned a putative function. Mining the genomes revealed the presence of 225 carbohydrate genes out of 1334 genes. Strain NA20T contained iso-C15 : 0, iso-C15 : 0 G, iso-C17 : 0 3-OH and summed feature 3 (C16 : 1 ω7c and/or C16 : 1 ω6c) as major fatty acids. The predominant quinone was MK-7. The major polar lipids were phosphatidylethanolamine, one unknown polar lipid and one unknown aminophospholipid. Additionally, the functional analysis of NA20T showed the conversion of protopanaxatriol-mix type major ginsenosides (Rb1, Rc and Rd) to minor ginsenosides F2 and weak conversion of Rh2 and C-K within 24 h. As a result, the genotypic, phenotypic and taxonomic analyses support the affiliation of NA20T within the genus Terrimonas, for which the name Terrimonas ginsenosidimutans sp. nov. is proposed. The type strain is NA20T (=KACC 22218T=LMG 32198T).


Subject(s)
Fatty Acids , Ginsenosides , Fatty Acids/chemistry , Glycoside Hydrolases/genetics , RNA, Ribosomal, 16S/genetics , Base Composition , Phylogeny , Bacterial Typing Techniques , DNA, Bacterial/genetics , Sequence Analysis, DNA , Bacteria/genetics , Vitamin K 2
4.
Molecules ; 28(9)2023 Apr 28.
Article in English | MEDLINE | ID: mdl-37175202

ABSTRACT

BACKGROUND AND OBJECTIVE: The ginsenoside compound K (C-K) (which is a de-glycosylated derivative of major ginsenosides) is effective in the treatment of cancer, diabetes, inflammation, allergy, angiogenesis, aging, and has neuroprotective, and hepatoprotective than other minor ginsenosides. Thus, a lot of studies have been focused on the conversion of major ginsenosides to minor ginsenosides using glycoside hydrolases but there is no study yet published for the bioconversion of minor ginsenosides into another high pharmacological active compound. Therefore, the objective of this study to identify a new gene (besides the glycoside hydrolases) for the conversion of minor ginsenosides C-K into another highly pharmacological active compound. METHODS AND RESULTS: Lactobacillus brevis which was isolated from Kimchi has showed the ginsenoside C-K altering capabilities. From this strain, a novel potent decarboxylation gene, named HSDLb1, was isolated and expressed in Escherichia coli BL21 (DE3) using the pMAL-c5X vector system. Recombinant HSDLb1 was also characterized. The HSDLb1 consists of 774 bp (258 amino acids residues) with a predicted molecular mass of 28.64 kDa. The optimum enzyme activity was recorded at pH 6.0-8.0 and temperature 30 °C. Recombinant HSDLb1 effectively transformed the ginsenoside C-K to 12-ß-hydroxydammar-3-one-20(S)-O-ß-D-glucopyranoside (3-oxo-C-K). The experimental data proved that recombinant HSDLb1 strongly ketonized the hydroxyl (-O-H) group at C-3 of C-K via the following pathway: C-K → 3-oxo-C-K. In vitro study, 3-oxo-C-K showed higher solubility than C-K, and no cytotoxicity to fibroblast cells. In addition, 3-oxo-C-K induced the inhibitory activity of ultraviolet A (UVA) against matrix metalloproteinase-1 (MMP-1) and promoted procollagen type I synthesis. Based on these expectations, we hypothesized that 3-oxo-C-K can be used in cosmetic products to block UV radiations and anti-ageing agent. Furthermore, we expect that 3-oxo-C-K will show higher efficacy than C-K for the treatment of cancer, ageing and other related diseases, for which more studies are needed.


Subject(s)
Ginsenosides , Humans , Ginsenosides/chemistry , Biotransformation , Glycoside Hydrolases/metabolism , Fibroblasts/metabolism , 3-Hydroxysteroid Dehydrogenases/metabolism , beta-Glucosidase/metabolism
5.
Article in English | MEDLINE | ID: mdl-37216283

ABSTRACT

Four novel bacterial strains, designated as RG327T, SE158T, RB56-2T and SE220T, were isolated from wet soil in the Republic of Korea. To determine their taxonomic positions, the strains were fully characterized. On the basis of genomic information (16S rRNA gene and draft genome sequences), all four isolates represent members of the genus Sphingomonas. The draft genomes of RG327T, SE158T, RB56-2T and SE220T consisted of circular chromosomes of 2 226 119, 2 507 338, 2 593 639 and 2 548 888 base pairs with DNA G+C contents of 64.6, 63.6, 63.0 and 63.1 %, respectively. All the isolates contained ubiquinone Q-10 as the predominant quinone compound and a fatty acid profile with C16 : 0, C17 : 1ω6c, C18 : 1 2-OH, summed feature 3 (C16 : 1ω7c/C16 : 1ω6c) and summed feature 8 (C18 : 1ω7c/C18 : 1ω6c) as the major fatty acids, supporting the affiliation of strains RG327T, SE158T, RB56-2T and SE220T to the genus Sphingomonas. The major identified polar lipids in all four novel isolates were phosphatidylglycerol, diphosphatidylglycerol, phosphatidylethanolamine, sphingoglycolipid and phosphatidylcholine. Moreover, the physiological, biochemical results and low level of DNA-DNA relatedness and average nucleotide identity values allowed the phenotypic and genotypic differentiation of RG327T, SE158T, RB56-2T and SE220T from other species of the genus Sphingomonas with validly published names and indicated that they represented novel species of the genus Sphingomonas, for which the names Sphingomonas anseongensis sp. nov. (RG327T = KACC 22409T = LMG 32497T), Sphingomonas alba sp. nov. (SE158T = KACC 224408T = LMG 324498T), Sphingomonas brevis (RB56-2T = KACC 22410T = LMG 32496T) and Sphingomonas hankyongi sp. nov., (SE220T = KACC 22406T = LMG 32499T) are proposed.


Subject(s)
Fatty Acids , Sphingomonas , Fatty Acids/chemistry , Phospholipids/chemistry , Sequence Analysis, DNA , RNA, Ribosomal, 16S/genetics , DNA, Bacterial/genetics , Base Composition , Phylogeny , Bacterial Typing Techniques , Spermidine/chemistry
6.
Curr Microbiol ; 80(3): 92, 2023 Feb 02.
Article in English | MEDLINE | ID: mdl-36725813

ABSTRACT

A Gram-staining-positive, catalase positive and oxidase negative, non-motile, non-flagellated, and oval-shaped bacterium, was designated as I2-34 T, isolated from wetland in Soul South Korea. Colonies were round, entire, raised, and cream colored after two days of incubation on R2A agar plates at 25 °C. Based on genomes (both 16S rRNA gene and draft genome) sequence analysis, strain I2-34 T belongs to the genus Arthrobacter and was most closely related to Arthrobacter deserti YIM CS25T (98.0%). The strain I2-34 T had a circular genome with length of 5,186,447 base pairs (67 contigs) and 4830 total genes. Out of 4696 were protein-coding genes, 54 tRNA and 4 rRNA genes. The chemotaxonomic analysis indicates iso-C16:0, anteiso-C15:0, and anteiso-C17:0 as major fatty acids, phosphatidylglycerol (PG), diphosphatidylglycerol (DPG), and two unidentified glycolipids (GL1, GL2) as major polar lipids. The predominant quinone was MK-8(H2). The peptidoglycan type was A3α with an. L-Lys-L-Ala interpeptide bridge. Thus, the experimental data demonstrated here show that the novel isolate shares the similar major fatty acids, major polar lipid PG, DPG, and GLs, major and major quinone MK8-(H2) with the described members of the genus Arthrobacter. However, the low 16S rRNA gene sequence (98.0%), and some physiological and biochemical characteristics differentiate the I2-34 T from its closest phylogenetic neighbors. As a result, the isolate represents a novel species in within the genus Arthrobacter and family Micrococcaceae for which the name Arthrobacter hankyongi sp. nov. is proposed. The type strain is I2-34 T (= KACC 22217 T, LMG 32197 T).


Subject(s)
Arthrobacter , Arthrobacter/genetics , Phylogeny , RNA, Ribosomal, 16S/genetics , Base Composition , Nucleic Acid Hybridization , DNA, Bacterial/genetics , Bacterial Typing Techniques , Sequence Analysis, DNA , Vitamin K 2 , Fatty Acids , Phospholipids
7.
J Food Sci Technol ; 60(1): 200-210, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36618031

ABSTRACT

Development of fermented flavour during storage reduces acceptability of Shughri pear. Therefore, the current study was designed to investigate the combined effect of 1-Methylcyclopropene (1-MCP) and hypobaric treatment on stability of Shughri pear during 120 days of storage. Fruit were treated individually or combinedly with 25, 50, and 75 kilo pascal hypobaric treatments for 4 h and 1-MCP (0.3 µLL-1 and 0.6 µLL-1) for 24 h, whereas control received no treatment. The pears were stored for 120 days at (0 ± 1 °C, 85 ± 5% RH), and were evaluated after every 30 days. After cold storage, pears were shifted to simulated retail conditions (20 ± 3 °C, 65 ± 5% RH). The combination of 25 kPa + 0.6 µLL-1 1-MCP significantly (P ≤ 0.05) delayed fruit ripening, reduced Alcohol dehydrogenase (ADH), and Pyruvate decarboxylase (PDC) activities, maintained the quality, and led to higher consumers' acceptability of the pear followed by 50 kPa + 0.6 µLL-1 and 25 kPa + 0.3 µLL-1. The control fruit were marketable for a week after storage with relatively less acceptability due to fermented flavour compared to treated fruit, marketable for more than two weeks. Among all the treatments, the synergy of 1-MCP and hypobaric treatment 25 kPa + 0.6 µLL-1 1-MCP improved the postharvest storage life and quality parameters, preventing development of fermented flavour in the pears. The experiment was conducted on pilot scale, for commercial application, the results of this study should be validated on large scale.

8.
J Genet Eng Biotechnol ; 21(1): 6, 2023 Jan 19.
Article in English | MEDLINE | ID: mdl-36656433

ABSTRACT

BACKGROUND: Rg3-ginsenoside, a protopanaxadiol saponin, is a well-known adaptogen used for the prevention of cancer and inflammation. However, despite its distinct biological activity, the concentration of Rg3 in the total ginseng extract is insufficient for therapeutic applications. This study aims to convert PPD-class of major ginsenosides into a mixture of minor ginsenoside, to analyze its immune-regulatory role in macrophage cells. RESULTS: Using heat and organic acid treatment, three major ginsenosides, Rc, Rd, and Rb1, were converted into a mixture of minor ginsenosides, GRg3-mix [Rg3(S), Rg3(R), Rg5, and Rk1]. Purity and content analysis of the transformed compound were performed using thin-layer chromatography (TLC) and high-performance liquid chromatography (HPLC), compared with their standards. Preceding with the anti-inflammatory activity of GRg3-mix, lipopolysaccharide (LPS)-stimulated murine RAW264.7 macrophage cells were treated with various concentrations of GRg3-mix (6.25, 12.5, 25, and 50 µg/mL). The cell viability assay revealed that the level of cell proliferation was increased, while the nitric oxide (NO) assay showed that NO production decreased dose-dependently in activated RAW264.7 cells. The obtained results were compared to those of pure Rg3(S) ≥ 98% (6.25, 12.5, and 25 µg/mL). Preliminary analysis of the CCK-8 and NO assay demonstrated that GRg3-mix can be used as an anti-inflammatory mediator, but mRNA and protein expression levels were evaluated for further confirmation. The doses of GRg3-mix significantly suppressed the initially upregulated mRNA and protein expression of inflammation-related enzymes and cytokines, namely inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), nuclear transcription factor kappa B (NF-κB), tumor necrosis factor (TNF-α), and interleukins (IL-6 and IL1B), as measured by reverse transcription-polymerase chain reaction and western blotting. CONCLUSIONS: Our pilot data confirmed that the mixture of minor ginsenosides, namely GRg3-mix, has high anti-inflammatory activity and has an easy production procedure.

9.
Molecules ; 27(10)2022 May 19.
Article in English | MEDLINE | ID: mdl-35630731

ABSTRACT

The saponins of Bupleurum falcatum L., saikosaponins, are the major components responsible for its pharmacological and biological activities. However, the anti-cancer effects of prosaikogenin and saikogenin, which are glycoside hydrolyzed saikosaponins, are still unknown due to its rarity in plants. In this study, we applied two recombinant glycoside hydrolases that exhibit glycoside cleavage activity with saikosaponins. The two enzymes, BglPm and BglLk, were cloned from Paenibacillus mucilaginosus and Lactobacillus koreensis, and exhibited good activity between 30-37 °C and pH 6.5-7.0. Saikosaponin A and D were purified and obtained from the crude B. falcatum L. extract using preparative high performance liquid chromatography technique. Saikosaponin A and D were converted into saikogenin F via prosaikogenin F, and saikogenin G via prosaikogenin G using enzyme transformation with high ß-glycosidase activity. The two saikogenin and two prosaikogenin compounds were purified using a silica column to obtain 78.1, 62.4, 8.3, and 7.5 mg of prosaikogenin F, prosaikogenin G, saikogenin F, and saikogenin G, respectively, each with 98% purity. The anti-cancer effect of the six highly purified saikosaponins was investigated in the human colon cancer cell line HCT 116. The results suggested that saikosaponins and prosaikogenins markedly inhibit the growth of the cancer cell line. Thus, this enzymatic technology could significantly improve the production of saponin metabolites of B. falcatum L.


Subject(s)
Sapogenins , Saponins , Humans , Hydrolysis , Oleanolic Acid/analogs & derivatives , Sapogenins/chemistry , Sapogenins/pharmacology , Saponins/chemistry , Saponins/pharmacology
10.
Int J Syst Evol Microbiol ; 71(12)2021 Dec.
Article in English | MEDLINE | ID: mdl-34870572

ABSTRACT

A Gram-stain-negative, aerobic and rod-shaped novel bacterial strain, designated MAH-26T, was isolated from rhizospheric soil of a pine tree. The colonies were orange coloured, smooth, spherical and 0.7-1.8 mm in diameter when grown on Reasoner's 2A (R2A) agar for 2 days. Strain MAH-26T was able to grow at 10-40 °C, at pH 6.0-9.0 and with 0-1.0 % NaCl. Cell growth occurred on nutrient agar, R2A agar, tryptone soya agar and Luria-Bertani agar. The strain gave positive results in oxidase and catalase tests. Strain MAH-26T was closely related to Flavihumibacter sediminis CJ663T and Parasegetibacter terrae SGM2-10T with a low 16S rRNA gene sequence similarity (92.8 and 92.9 %, respectively) and phylogenetic analysis indicated that the strain formed a distinct phylogenetic lineage from the members of the closely related genera of the family Chitinophagaceae. Strain MAH-26T has a draft genome size of 6 857 405 bp, annotated with 5173 protein-coding genes, 50 tRNA and two rRNA genes. The genomic DNA G+C content was 41.5 mol%. The predominant isoprenoid quinone was menaquinone 7. The major fatty acids were identified as iso-C15:0, iso-C15:1 G and iso-C17:0 3OH. On the basis of phylogenetic inference and phenotypic, chemotaxonomic and molecular properties, strain MAH-26T represents a novel species of a novel genus of the family Chitinophagaceae, for which the name Pinibacter aurantiacus gen. nov., sp. nov. is proposed. The type strain of Pinibacter aurantiacus is MAH-26T (=KACC 19749T=CGMCC 1.13701T).


Subject(s)
Bacteroidetes/classification , Phylogeny , Pinus , Soil Microbiology , Bacterial Typing Techniques , Bacteroidetes/isolation & purification , Base Composition , DNA, Bacterial/genetics , Fatty Acids/chemistry , Pigmentation , Pinus/microbiology , RNA, Ribosomal, 16S/genetics , Rhizosphere , Sequence Analysis, DNA , Vitamin K 2/analogs & derivatives
11.
Saudi J Biol Sci ; 28(8): 4668-4676, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34354454

ABSTRACT

BACKGROUND: Ginsenoside Rh2(S) is a promising compound for the prevention of various kinds of cancers, inflammation, and diabetes. However, due to its low concentration (<0.02%), researchers are still trying to find an efficient glycoside hydrolase for the scaled-up production of Rh2(S). METHOD: Three glycoside hydrolases (BglBX10, Abf22-3, and BglSk) were cloned in Escherichia coli BL21 (DE3) and the expressed recombinant enzyme was used for the scaled-up production of Rh2(S) through the conversion of PPD-type (protopanaxadiol) major ginsenosides (Rb1, Rc, and Rd, except Rb2) extracted from Korean red ginseng. Specific and specialized bioconversion pathways were designed that evolved the initial bioconversion of PPD-mix â†’ Rg3(S) â†’ Rh2(S). The reaction was started with 50 mg/mL of PPD-mix, 20 mg/mL of BglBX10, Abf22-3, and BglSk in series, respectively. The process was completed in a 10 L jar fermenter with a 5 L working volume at 37 °C for 48 hrs. RESULTS: The designed bioconversion pathways show that Abf22-3 and BglBX10 were responsible for the conversion of Rb1, Rc and Rd â†’ Rg3(S), and then Rg3(S) was completely transformed to Rh2(S) by BglSk. As a result, 15.1 g of ginsenoside Rh2(S) with 98.0 ± 0.2% purity was obtained after strict purification using the Prep-HPLC system with a 100 φ diameter column. Additionally, BglSk was also investigated for its production activity with seven different kinds of PPD-mix type ginsenosides. CONCLUSION: Our pilot data demonstrate that BglSk is a suitable enzyme for the gram unit production of ginsenoside Rh2(S) at the industrial level.

12.
Arch Microbiol ; 203(7): 3997-4004, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34032872

ABSTRACT

A novel, pink-pigmented, Gram-stain-positive, aerobic, motile, rod-shaped and ginsenoside-converting bacterium, designated strain MAHUQ-46T, was isolated from soil of a forest. Strain MAHUQ-46T grew in the pH range 6.0-9.0 (optimum, 7.5), at temperatures between 10 and 37 °C (optimum, 30 °C) and at 0-3% (w/v) NaCl (optimum, 0.5%). 16S rRNA gene sequence analysis showed that strain MAHUQ-46T was closely related to Paenibacillus pinihumi S23T (97.3% similarity), followed by Paenibacillus elymi KUDC6143T (96.7%). The draft genome of strain MAHUQ-46T had a total length of 5,367,904 base pairs. A total of 4,857 genes were identified, in which 4,629 were protein-coding genes and 137 were RNA genes. The genome annotation of MAHUQ-46T showed 172 carbohydrate genes, some of them may be responsible for the biosynthesis of ginsenoside Rd from major ginsenoside Rb1. The DNA G + C content was 48.4 mol% and the major quinone was MK-7. Main fatty acids of strain MAHUQ-46T were C15: 0 anteiso, C16: 0 and C17: 0 anteiso. The polar lipids comprised phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, phosphatidyl-N-methylethanolamine, two unidentified aminophospholipids and five unidentified phospholipids. Diagnostic diamino acid of peptidoglycan was meso-diaminopimelic acid. The novel strain MAHUQ-46T was able to rapidly synthesize ginsenoside Rd from major ginsenoside Rb1. The synthesized ginsenoside was confirmed by TLC and HPLC analysis. According to the phenotypic, genetic and chemotaxonomic evidence, strain MAHUQ-46T was clearly distinguishable from validly published species of genus Paenibacillus and should, therefore, be categorized as a novel species for which the name Paenibacillus roseus sp. nov. is proposed. The type strain is MAHUQ-46T (= KACC 21242T = CGMCC 1.17353T).


Subject(s)
Ginsenosides , Paenibacillus , Forests , Ginsenosides/metabolism , Paenibacillus/classification , Paenibacillus/genetics , Paenibacillus/isolation & purification , Phylogeny , RNA, Ribosomal, 16S/genetics , Soil Microbiology , Species Specificity
13.
Article in English | MEDLINE | ID: mdl-33974532

ABSTRACT

The conversion of major ginsenosides into minor ginsenosides attracts a lot of interest because of their biological and pharmaceutical activities. Therefore, for the conversion of ginsenosides, finding a novel competent glycoside hydrolase-producing bacterial strain is useful for future research studies and the mass production of minor ginsenosides. Wastewater samples were collected and screened for novel glycoside hydrolase bacterial strains using Reasoner's 2A+aesculin agar medium. As a result, a novel glycoside hydrolase positive bacterial strain (SB-02T) was identified and subjected to a polyphasic taxonomic analysis. Based on genome analysis, strain SB-02T was found to be affiliated with the family Chitinophagaceae and have less than 92.8 % sequence similarity to other members of the same family. Functional analysis indicated that SB-02T was able to hydrolyse the ginsenosides Rb1, Rc and Rd to F2 and C-K. Due to the conversion of ginsenosides, the strain's genome was sequenced and the genes were annotated by the NCBI. The average amino acid identity and average nucleotide identity values between SB-02T and the available reference genomes were 65.7 and 65.9 %, respectively. The novel isolate contained MK-7 as the predominant menaquinone, the major polyamine putrescine, and iso-C15 : 0, iso-C15 : 1 G and iso-C17 : 0 3-OH as major fatty acids. The major polar lipids were diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine. Thus, based on the data presented here, strain SB-02T represents a novel species within a new genus in the family Chitinophagaceae, for which the name Phnomibacter ginsenosidimutans gen. nov., sp. nov. is proposed. The type strain of Phnomibacter ginsenosidimutans is SB-02T (=KACC 21266T=LMG 31707T). The genome annotation of SB-02T shows many glycoside hydrolase genes, which may be responsible for the efficient production of many kinds of minor ginsenosides and will be very helpful for future research (target gene cloning) and mass production of either F2 or C-K.


Subject(s)
Bacteroidetes/classification , Ginsenosides/metabolism , Phylogeny , Wastewater/microbiology , Bacterial Typing Techniques , Bacteroidetes/enzymology , Bacteroidetes/isolation & purification , Base Composition , Cambodia , DNA, Bacterial/genetics , Fatty Acids/chemistry , Glycoside Hydrolases/genetics , Phospholipids/chemistry , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Vitamin K 2/analogs & derivatives , Vitamin K 2/chemistry
14.
Antonie Van Leeuwenhoek ; 114(1): 11-22, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33226510

ABSTRACT

A novel yellow-pigmented bacterial strain (designated BR5-29T), was isolated and its taxonomy was studied. Phylogenetic study based on the 16S rRNA and draft genome sequence placed the strain BR5-29T in a distinct lineage within the family Chitinophagaceae, sharing ≤ 93.4% sequence similarity with members of the closely related genera Ferruginibacter, Flavisolibacter, Flavitalea and Niastella. The novel isolate showed the highest sequence similarity to the genus Ferruginibacter. The draft genome of strain BR5-29T had a total length of 5,505,520 base pairs. A total of 4585 genes were identified, in which 4537 were CDS and 48 RNA genes were assigned a putative function. The genome annotation of BR5-29T showed 225 carbohydrate genes which may be responsible for the conversion of major ginsenosides to minor ginsenosides. Strain BR5-29T contained MK-7 as a predominant quinone, and iso-C15:0, iso-C15:0 G, iso-C17:0 3-OH, and C16:1 ω7c and/or C16:1 ω6c (summed feature 3) as major fatty acids. The polar lipids found in the strain BR5-29T were phosphatidylglycerol (PG), diphosphatidylglycerol (DPG), phosphatidylethanolamine (PE), five unidentified polar lipids (L1-L5), two unidentified aminolipid and one unidentified aminophospholipid. Our pilot data demonstrate that the novel isolate shares the similar major polar lipid PE, major quinone MK-7 and major fatty acids with the described members of the family Chitinophagaceae. However, the low 16S rRNA gene sequence (< 93.4%), the little high amount of C12:0, iso-C17:0 2-OH and iso-C15:1 2-OH fatty acids, low DNA G + C content, and the presence of DPG, PG and two unidentified polar lipids (L1 and L3 differentiate the BR5-29T from its closest phylogenetic neighbors. Thus, the isolate represents a novel genus and species in the family Chitinophagaceae for which the name Ginsengibacter hankyongi gen. nov., sp. nov. is proposed. The type strain is BR5-29T (= KACC 19446T = LMG 30462T). Thus, we predict that this novel strain may prove useful for the future research analysis (target gene cloning) and mass production of Rg3.


Subject(s)
Ginsenosides , Bacterial Typing Techniques , Base Composition , DNA, Bacterial/genetics , Fatty Acids/analysis , Phospholipids/analysis , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Soil
15.
Arch Microbiol ; 203(2): 543-548, 2021 Mar.
Article in English | MEDLINE | ID: mdl-32970222

ABSTRACT

A novel bacterial strain, designated MAH-20T, was isolated from a soil sample of a tomato garden. Cells of strain MAH-20T were Gram-stain negative, aerobic, motile, and rod-shaped. The colonies were light brown colored, smooth, spherical, and 0.2-0.7 mm in diameter when grown on Luria-Bertani agar for 2 days. Strain MAH-20T grows at 15-40 °C (optimum growth temperature 30-32 °C), at pH 5.0-10.0 (optimum growth pH 7.0) and at 0-2.0% NaCl. The strain showed positive activity for both oxidase and catalase tests. Cells were able to hydrolyze starch, DNA, urea, gelatin, L-arginine, and Tween 20. According to the 16S rRNA gene sequence similarity, the strain MAH-20T was identified as a new member of the genus Sphingomonas and had the close sequence similarity with Sphingomonas changbaiensis V2M44T (98.9%) and Sphingomonas tabacisoli X1-8T (98.1%). The genomic ANI value between strain MAH-20T and S. changbaiensis NBRC 104936T was 84.4%. The novel strain MAH-20T has a draft genome size of 3,350,026 bp (25 contigs), annotated with 3210 protein-coding genes, 46 tRNA, and 3 rRNA genes. The genomic DNA G + C content of isolate was 67.3 mol%, the predominant quinone was ubiquinone 10 and the major fatty acids were C16:0, C17:1 ω6c and summed feature 8 (comprising C18:1 ω7c and/or C18:1 ω6c). On the basis of DNA-DNA hybridization results, phenotypic, genotypic, and chemotaxonomic data, the isolated strain MAH-20T represents a novel species, for which the name Sphingomonas horti sp. nov. is proposed, with MAH-20T as the type strain (= KACC 19746T = CGMCC1.13658T).


Subject(s)
Soil Microbiology , Sphingomonas/classification , Base Composition , Fatty Acids/analysis , Gardens , Solanum lycopersicum/microbiology , Phylogeny , RNA, Ribosomal, 16S/genetics , Species Specificity , Sphingomonas/genetics
16.
Int J Mol Sci ; 21(24)2020 Dec 21.
Article in English | MEDLINE | ID: mdl-33371231

ABSTRACT

It is essential to develop and discover alternative eco-friendly antibacterial agents due to the emergence of multi-drug-resistant microorganisms. In this study, we isolated and characterized a novel bacterium named Terrabacter humi MAHUQ-38T, utilized for the eco-friendly synthesis of silver nanoparticles (AgNPs) and the synthesized AgNPs were used to control multi-drug-resistant microorganisms. The novel strain was Gram stain positive, strictly aerobic, milky white colored, rod shaped and non-motile. The optimal growth temperature, pH and NaCl concentration were 30 °C, 6.5 and 0%, respectively. Based on 16S rRNA gene sequence, strain MAHUQ-38T belongs to the genus Terrabacter and is most closely related to several Terrabacter type strains (98.2%-98.8%). Terrabacter humi MAHUQ-38T had a genome of 5,156,829 bp long (19 contigs) with 4555 protein-coding genes, 48 tRNA and 5 rRNA genes. The culture supernatant of strain MAHUQ-38T was used for the eco-friendly and facile synthesis of AgNPs. The transmission electron microscopy (TEM) image showed the spherical shape of AgNPs with a size of 6 to 24 nm, and the Fourier transform infrared (FTIR) analysis revealed the functional groups responsible for the synthesis of AgNPs. The synthesized AgNPs exhibited strong anti-bacterial activity against multi-drug-resistant pathogens, Escherichia coli and Pseudomonas aeruginosa. Minimal inhibitory/bactericidal concentrations against E. coli and P. aeruginosa were 6.25/50 and 12.5/50 µg/mL, respectively. The AgNPs altered the cell morphology and damaged the cell membrane of pathogens. This study encourages the use of Terrabacter humi for the ecofriendly synthesis of AgNPs to control multi-drug-resistant microorganisms.


Subject(s)
Actinobacteria/chemistry , Anti-Bacterial Agents/pharmacology , Bacteria/drug effects , Drug Resistance, Bacterial/drug effects , Metal Nanoparticles/administration & dosage , Silver/chemistry , Anti-Bacterial Agents/chemistry , Bacteria/growth & development , Bacteria/pathogenicity , Metal Nanoparticles/chemistry
17.
Int J Syst Evol Microbiol ; 70(11): 5841-5847, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32965207

ABSTRACT

A Gram-stain-negative, aerobic, non-motile and rod- or coccoid-shaped novel bacterial strain, designated MAH-25T, was isolated from soil sampled in a pine garden. The colonies were observed to be light pink-coloured, smooth, spherical and 1-2 mm in diameter when grown on nutrient agar for 2 days. Strain MAH-25T was found to be able to grow at 15-35 °C, at pH 5.0-8.0 and at 0-2.0 % NaCl. Cell growth occurred on Reasoner's 2A agar and nutrient agar. The strain was found to be positive in both oxidase and catalase tests. According to 16S rRNA gene sequence comparisons, the isolate was identified as a member of the genus Ramlibacter and closely related to Ramlibacter solisilvae 5-10T (98.0 % similarity), Ramlibacter henchirensis TMB834T (97.7 %), Ramlibacter tataouinensis TTB310T (97.6 %) and Ramlibacter rhizophilus YS3.2.7T (97.3 %). The average nucleotide identity and digital DNA-DNA hybridization values between strain MAH-25T and the four closely related type strains were in the range of 78.8-81.3 % and 22.3-24.1 %, respectively. The novel strain MAH-25T has a draft genome size of 5 505 957 bp (11 contigs), annotated with 5210 protein-coding genes, 46 tRNA and three rRNA genes. The genomic DNA G+C content was determined to be 70.3 mol%. The predominant isoprenoid quinone was ubiquinone 8 (Q-8). The major fatty acids were identified as C16 : 0, summed feature 3 (C16 : 1 ω7c and/or C16 : 1 ω6c) and summed feature 8 (C18 : 1 ω7c and/or C18 : 1 ω6c). The main polar lipids were phosphatidylethanolamine, phosphatidylglycerol and diphosphatidylglycerol. On the basis of DNA-DNA hybridization, genotypic analysis, chemotaxonomic and physiological data, strain MAH-25T represents a novel species within the genus Ramlibacter, for which the name Ramlibacter pinisoli sp. nov. is proposed, with MAH-25T (=KACC 19839T=CGMCC1.13660T) as the type strain.


Subject(s)
Comamonadaceae/classification , Gardens , Phylogeny , Pinus , Soil Microbiology , Bacterial Typing Techniques , Base Composition , Comamonadaceae/isolation & purification , DNA, Bacterial/genetics , Fatty Acids/chemistry , Nucleic Acid Hybridization , Phospholipids/chemistry , Pigmentation , RNA, Ribosomal, 16S/genetics , Republic of Korea , Sequence Analysis, DNA , Ubiquinone/chemistry
18.
Curr Microbiol ; 77(9): 2002-2007, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32504324

ABSTRACT

A Gram-reaction negative, aerobic, non-motile, light yellow colored, and rod-shaped bacterium (designated Gr-4T) isolated from granules of a wastewater treatment plant, was characterized by a polyphasic approach to clarify its taxonomic position. Strain Gr-4T was observed to grew optimally at 30 ºC and at pH 7.0 on R2A medium. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain Gr-4T belongs to the genus Luteimonas of the family Xanthomonadaceae and was most closely related to Luteimonas padinae CDR SL 15T (99.1%), Luteimonas terricola DSM 22344T (98.5%) and Luteimonas arsenica 26-35T (97.6). The genome comprises 2,917,404 bp with a G+C content of 70.5 mol%. The ANI value between strain Gr-4T and Luteimonas padinae CDR SL 15T was 87.3%. The DNA-DNA relatedness value between strain Gr-4T and Luteimonas padinae CDR SL 15T, Luteimonas terricola DSM 22344T was 36.4 ± 1.3% and 14.2 ± 1.7%, respectively. The predominant quinone was Q-8. The major fatty acids were iso-C15:0, iso-C16:0 and summed feature 9 (comprising iso-C17:1ω9c and/or C16:0 10-methyl) supported the affiliation of strain Gr-4T to the genus Luteimonas. Moreover, the physiological, biochemical results, and low level of ANI and DNA-DNA relatedness value allowed the phenotypic and genotypic differentiation of strains Gr-4T from other Luteimonas species with validly published names. The novel isolate therefore represents a novel species, for which the name Luteimonas granuli sp. nov. is proposed, with the type strain Gr-4T (=KACC 16614T = JCM 18203T).


Subject(s)
Water Purification , Xanthomonadaceae , Bacterial Typing Techniques , DNA, Bacterial/genetics , Fatty Acids , Nucleic Acid Hybridization , Phospholipids , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Ubiquinone , Xanthomonadaceae/genetics
19.
Int J Syst Evol Microbiol ; 70(3): 1489-1495, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32228770

ABSTRACT

A Gram-stain-negative, strictly aerobic, motile, ivory-coloured and rod-shaped bacterium (designated Gsoil 520T) isolated from ginseng cultivation soil was characterized by using a polyphasic approach to clarify its taxonomic position. Strain Gsoil 520T was observed to grow optimally at 30 °C and pH 7.0 on Reasoner's 2A agar medium. The results of phylogenetic analysis, based on 16S rRNA gene sequence similarities, indicated that Gsoil 520T belongs to the genus Devosia of the family Hyphomicrobiaceae and was most closely related to Devosia epidermidihirudinis E84T (98.0 %), Devosia yakushimensis Yak96BT (97.7 %), Devosia neptuniae J1T (97.7 %) and Devosia chinhatensis IPL18T (96.8 %). The complete genome of strain Gsoil 520T is a presumptive circular chromosome of 4 480 314 base pairs having G+C content of 63.7 mol%. A total of 4 354 genes, 4 303 CDS and 43 rRNA genes were assigned a putative function. The major isoprenoid quinone was Q-10. The main polar lipids were phosphatidylglycerol, diphosphatidylglycerol and two unidentified aminolipids (AL1 and AL3). The predominant fatty acids of strain Gsoil 520T were C18 : 1ω7c 11-methyl, C16 : 0 and C18 : 1ω7c/C18 : 1ω6c (summed feature 8) supporting the affiliation of strain Gsoil 520T to the genus Devosia. The low values of DNA-DNA hybridization distinguished strain Gsoil 520T from the recognized species of the genus Devosia. Thus, the novel isolate represents a novel species of the genus Devosia, for which the name Devosia ginsengisoli sp. nov. is proposed, with the type strain Gsoil 520T (=KACC 19440T=LMG 30329T).


Subject(s)
Hyphomicrobiaceae/classification , Panax/microbiology , Phylogeny , Soil Microbiology , Bacterial Typing Techniques , Base Composition , DNA, Bacterial/genetics , Fatty Acids/chemistry , Hyphomicrobiaceae/isolation & purification , Nucleic Acid Hybridization , Phospholipids/chemistry , RNA, Ribosomal, 16S/genetics , Republic of Korea , Sequence Analysis, DNA , Ubiquinone/analogs & derivatives , Ubiquinone/chemistry
20.
Int J Syst Evol Microbiol ; 70(4): 2211-2216, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32118525

ABSTRACT

An aerobic and Gram-stain-negative bacterial strain, designated UKS-15T, was isolated from lake water in the Republic of Korea. Results of 16S rRNA gene sequence and phylogenetic analyses indicated that the novel isolate belongs to the genus Lysobacter and was most closely related to Lysobacter xinjiangensis RCML-52T (98.0 %), Lysobacter mobilis 9 NM-14T (97.4 %) and Lysobacter humi FJY8T (97.2 %). The DNA G+C content was 69.1 mol%. Strain UKS-15T possessed ubiquinone-8 (Q-8) as the sole respiratory quinone and the fatty acid profile comprised iso-C15 : 0, iso-C17 : 0 and summed feature 9 (iso-C17 : 1 ω9c and/or C16 : 0 10-methyl) as its major components. The major polar lipids were phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol and one unidentified aminophospholipid. Moreover, the physiological and biochemical results and low level of DNA-DNA relatedness (<22.0 %) allowed the phenotypic and genotypic differentiation of strain UKS-15T from other Lysobacter species. Therefore, on the basis of the data from this polyphasic taxonomic study, strain UKS-15T should represent a novel species of the genus Lysobacter, for which the name Lysobacter lacus sp. nov. is proposed. The type strain is UKS-15T (=JCM 30983T=KACC 18719T).


Subject(s)
Geologic Sediments/microbiology , Lakes/microbiology , Lysobacter/classification , Phylogeny , Bacterial Typing Techniques , Base Composition , DNA, Bacterial/genetics , Fatty Acids/chemistry , Lysobacter/isolation & purification , Nucleic Acid Hybridization , Phospholipids/chemistry , RNA, Ribosomal, 16S/genetics , Republic of Korea , Sequence Analysis, DNA , Ubiquinone/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...