Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS Pathog ; 19(7): e1011477, 2023 07.
Article in English | MEDLINE | ID: mdl-37410772

ABSTRACT

SUMO modifications regulate the function of many proteins and are important in controlling herpesvirus infections. We performed a site-specific proteomic analysis of SUMO1- and SUMO2-modified proteins in Epstein-Barr virus (EBV) latent and lytic infection to identify proteins that change in SUMO modification status in response to EBV reactivation. Major changes were identified in all three components of the TRIM24/TRIM28/TRIM33 complex, with TRIM24 being rapidly degraded and TRIM33 being phosphorylated and SUMOylated in response to EBV lytic infection. Further experiments revealed TRIM24 and TRIM33 repress expression of the EBV BZLF1 lytic switch gene, suppressing EBV reactivation. However, BZLF1 was shown to interact with TRIM24 and TRIM33, resulting in disruption of TRIM24/TRIM28/TRIM33 complexes, degradation of TRIM24 and modification followed by degradation of TRIM33. Therefore, we have identified TRIM24 and TRIM33 as cellular antiviral defence factors against EBV lytic infection and established the mechanism by which BZLF1 disables this defence.


Subject(s)
Epstein-Barr Virus Infections , Humans , Herpesvirus 4, Human/genetics , Trans-Activators/genetics , Trans-Activators/metabolism , Small Ubiquitin-Related Modifier Proteins/metabolism , Proteomics , Virus Activation , Virus Latency , Transcription Factors/metabolism , Carrier Proteins
2.
J Virol ; 93(20)2019 10 15.
Article in English | MEDLINE | ID: mdl-31341047

ABSTRACT

Epstein-Barr virus (EBV) maintains a life-long infection due to the ability to alternate between latent and lytic modes of replication. Lytic reactivation starts with derepression of the Zp promoter controlling BZLF1 gene expression, which binds and is activated by the c-Jun transcriptional activator. Here, we identified the cellular Arkadia-like 1 (ARKL1) protein as a negative regulator of Zp and EBV reactivation. Silencing of ARKL1 in the context of EBV-positive gastric carcinoma (AGS) cells, nasopharyngeal carcinoma (NPC43) cells, and B (M81) cells led to increased lytic protein expression, whereas overexpression inhibited BZLF1 expression. Similar effects of ARKL1 modulation were seen on BZLF1 transcripts as well as on Zp activity in Zp reporter assays, showing that ARKL1 repressed Zp. Proteomic profiling of ARKL1-host interactions identified c-Jun as an ARKL1 interactor, and reporter assays for Jun transcriptional activity showed that ARKL1 inhibited Jun activity. The ARKL1-Jun interaction required ARKL1 sequences that we previously showed mediated binding to the CK2 kinase regulatory subunit CK2ß, suggesting that CK2ß might mediate the ARKL1-Jun interaction. This model was supported by the findings that silencing of CK2ß, but not the CK2α catalytic subunit, abrogated the ARKL1-Jun interaction and phenocopied ARKL1 silencing in promoting EBV reactivation. Additionally, ARKL1 was associated with Zp in reporter assays and this was increased by additional CK2ß. Together, the data indicate that ARKL1 is a negative regulator of Zp and EBV reactivation that acts by inhibiting Jun activity through a CK2ß-mediated interaction.IMPORTANCE Epstein-Barr virus (EBV) maintains a life-long infection due to the ability to alternate between latent and lytic modes of replication and is associated with several types of cancer. We have identified a cellular protein (ARKL1) that acts to repress the reactivation of EBV from the latent to the lytic cycle. We show that ARKL1 acts to repress transcription of the EBV lytic switch protein by inhibiting the activity of the cellular transcription factor c-Jun. This not only provides a new mechanism of regulating EBV reactivation but also identifies a novel cellular function of ARKL1 as an inhibitor of Jun-mediated transcription.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Epstein-Barr Virus Infections/metabolism , Epstein-Barr Virus Infections/virology , Host-Pathogen Interactions , Virus Activation , Adaptor Proteins, Signal Transducing/genetics , Gene Expression Regulation, Viral , Herpesvirus 4, Human/physiology , Host-Pathogen Interactions/genetics , Humans , Promoter Regions, Genetic , Protein Binding , Protein Transport , Proto-Oncogene Proteins c-jun/metabolism , Trans-Activators/genetics , Trans-Activators/metabolism
3.
PLoS Pathog ; 14(7): e1007176, 2018 07.
Article in English | MEDLINE | ID: mdl-29979787

ABSTRACT

Many cellular processes pertinent for viral infection are regulated by the addition of small ubiquitin-like modifiers (SUMO) to key regulatory proteins, making SUMOylation an important mechanism by which viruses can commandeer cellular pathways. Epstein-Barr virus (EBV) is a master at manipulating of cellular processes, which enables life-long infection but can also lead to the induction of a variety of EBV-associated cancers. To identify new mechanisms by which EBV proteins alter cells, we screened a library of 51 EBV proteins for global effects on cellular SUMO1 and SUMO2 modifications (SUMOylation), identifying several proteins not previously known to manipulate this pathway. One EBV protein (BRLF1) globally induced the loss of SUMOylated proteins, in a proteasome-dependent manner, as well as the loss of promeylocytic leukemia nuclear bodies. However, unlike its homologue (Rta) in Kaposi's sarcoma associated herpesvirus, it did not appear to have ubiquitin ligase activity. In addition we identified the EBV SM protein as globally upregulating SUMOylation and showed that this activity was conserved in its homologues in herpes simplex virus 1 (HSV1 UL54/ICP27) and cytomegalovirus (CMV UL69). All three viral homologues were shown to bind SUMO and Ubc9 and to have E3 SUMO ligase activity in a purified system. These are the first SUMO E3 ligases discovered for EBV, HSV1 and CMV. Interestingly the homologues had different specificities for SUMO1 and SUMO2, with SM and UL69 preferentially binding SUMO1 and inducing SUMO1 modifications, and UL54 preferentially binding SUMO2 and inducing SUMO2 modifications. The results provide new insights into the function of this family of conserved herpesvirus proteins, and the conservation of this SUMO E3 ligase activity across diverse herpesviruses suggests the importance of this activity for herpesvirus infections.


Subject(s)
Cytomegalovirus/enzymology , Herpesvirus 1, Human/enzymology , Herpesvirus 4, Human/enzymology , Ubiquitin-Protein Ligases/metabolism , Viral Proteins/metabolism , Cell Line , Genome-Wide Association Study , Humans , Sumoylation
SELECTION OF CITATIONS
SEARCH DETAIL
...