Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Sci Rep ; 12(1): 16315, 2022 09 29.
Article in English | MEDLINE | ID: mdl-36175531

ABSTRACT

Soil salinity affects various crop cultivation but legumes are the most sensitive to salinity. Osmotic stress is the first stage of salinity stress caused by excess salts in the soil on plants which adversely affects the growth instantly. The Trehalose-6-phosphate synthase (TPS) genes play a key role in the regulation of abiotic stresses resistance from the high expression of different isoform. Selected genotypes were evaluated to estimate for salt tolerance as well as genetic variability at morphological and molecular level. Allelic variations were identified in some of the selected genotypes for the TPS gene. A comprehensive analysis of the TPS gene from selected genotypes was conducted. Presence of significant genetic variability among the genotypes was found for salinity tolerance. This is the first report of allelic variation of TPS gene from chickpea and results indicates that the SNPs present in these conserved regions may contribute largely to functional distinction. The nucleotide sequence analysis suggests that the TPS gene sequences were found to be conserved among the genotypes. Some selected genotypes were evaluated to estimate for salt tolerance as well as for comparative analysis of physiological, molecular and allelic variability for salt responsive gene Trehalose-6-Phosphate Synthase through sequence similarity. Allelic variations were identified in some selected genotypes for the TPS gene. It is found that Pusa362, Pusa1103, and IG5856 are the most salt-tolerant lines and the results indicates that the identified genotypes can be used as a reliable donor for the chickpea improvement programs for salinity tolerance.


Subject(s)
Cicer , Cicer/genetics , Glucosyltransferases , Salt Tolerance/genetics , Salts , Soil
2.
Funct Plant Biol ; 48(9): 839-850, 2021 08.
Article in English | MEDLINE | ID: mdl-33934747

ABSTRACT

Genotypic variation in transpiration (Tr) response to vapour pressure deficit (VPD) has been studied in many crop species. There is debate over whether shoots or roots drive these responses. We investigated how stomata coordinate with plant hydraulics to mediate Tr response to VPD and influence leaf water status in wheat (Triticum aestivum L.). We measured Tr and stomatal conductance (gs) responses to VPD in well-watered, water-stressed and de-rooted shoots of eight wheat genotypes. Tr response to VPD was related to stomatal sensitivity to VPD and proportional to gs at low VPD, except in the water-stressed treatment, which induced strong stomatal closure at all VPD levels. Moreover, gs response to VPD was driven by adaxial stomata. A simple linear Tr response to VPD was associated with unresponsive gs to VPD. In contrast, segmented linear Tr to VPD response was mostly a function of gs with the breakpoint depending on the capacity to meet transpirational demand and set by the shoots. However, the magnitude of Tr response to VPD was influenced by roots, soil water content and stomatal sensitivity to VPD. These findings, along with a theoretical model suggest that stomata coordinate with plant hydraulics to regulate Tr response to VPD in wheat.


Subject(s)
Plant Transpiration , Triticum , Plant Leaves , Plant Stomata , Vapor Pressure
3.
BMC Plant Biol ; 19(1): 242, 2019 Jun 07.
Article in English | MEDLINE | ID: mdl-31174465

ABSTRACT

BACKGROUND: Recurrent drought associated with climate change is a major constraint to wheat (Triticum aestivum L.) productivity. This study aimed to (i) quantify the effects of addition/substitution/translocation of chromosome segments from wild relatives of wheat on the root, physiological and yield traits of hexaploid wheat under drought, and (ii) understand the mechanism(s) associated with drought tolerance or susceptibility in wheat-alien chromosome lines. METHODS: A set of 48 wheat-alien chromosome lines (addition/substitution/translocation lines) with Chinese Spring background were used. Seedling root traits were studied on solid agar medium. To understand the influence of drought on the root system of adult plants, these 48 lines were grown in 150-cm columns for 65 d under full irrigation or withholding water for 58 d. To quantify the effect of drought on physiological and yield traits, the 48 lines were grown in pots under full irrigation until anthesis; after that, half of the plants were drought stressed by withholding water for 16 d before recording physiological and yield-associated traits. RESULTS: The alien chromosome lines exhibited altered root architecture and decreased photochemical efficiency and seed yield and its components under drought. The wheat-alien chromosome lines T5DS·5S#3L (TA5088) with a chromosome segment from Aegilops speltoides (5S) and T5DL.5 V#3S (TA5638) with a chromosome segment from Dasypyrum villosum (5 V) were identified as drought tolerant, and the drought tolerance mechanism was associated with a deep, thin and profuse root system. CONCLUSIONS: The two germplasm lines (TA5088 and TA5638) could be used in wheat breeding programs to improve drought tolerance in wheat and understand the underlying molecular genetic mechanisms of root architecture and drought tolerance.


Subject(s)
Chromosomes, Plant/genetics , Droughts , Genes, Plant/genetics , Plant Breeding , Triticum/genetics , Aegilops/genetics , Plant Roots/anatomy & histology , Plant Roots/genetics , Plant Roots/growth & development , Poaceae/genetics , Triticum/anatomy & histology , Triticum/growth & development
4.
Sci Rep ; 9(1): 7788, 2019 05 24.
Article in English | MEDLINE | ID: mdl-31127130

ABSTRACT

Rising global temperatures are proving to be detrimental for the agriculture. Hence, strategies are needed to induce thermotolerance in food crops to sustain the food production. GABA (γ-aminobutyric acid), a non-protein amino acid, can partially protect plants from high-temperature stress. This study hypothesises that declining GABA concentrations in the cells of heat-stressed mungbean plants increases the heat-sensitivity of reproductive function. Mungbean plants were grown in a natural, outdoor environment (29.3/16.1 ± 1 °C as mean day/night temperature, 1350-1550 µmol m-2 s-1 light intensity, 60-65% as mean relative humidity) until the start of the reproductive stage. Subsequently, two temperature treatments were imposed in a controlled environment-control (35/23 °C) and heat stress (45/28 °C)-at about 800 µmol m-2 s-1 light intensity and 65-70% as mean relative humidity, until pod maturity. In heat-stressed (HS) plants, endogenous GABA concentrations in leaf and anther samples had declined by 49 and 60%, respectively, and to a much lesser degree in the plants, exogenously supplemented with 1 mM GABA. The reproductive function of GABA-treated heat-stressed plants improved significantly in terms of pollen germination, pollen viability, stigma receptivity and ovule viability, compared to untreated HS controls. In addition, GABA-treated heat-stressed plants had less damage to membranes, photosynthetic machinery (chlorophyll concentration, chlorophyll fluorescence, RuBisCO activity were functionally normal) and carbon assimilation (sucrose synthesis and its utilisation) than the untreated HS controls. Leaf water status improved significantly with GABA application, including enhanced accumulation of osmolytes such as proline and trehalose due to increase in the activities of their biosynthetic enzymes. GABA-treated heat-stressed plants produced more pods (28%) and seed weight (27%) plant-1 than the untreated controls. This study is the first to report the involvement of GABA in protecting reproductive function in mungbean under heat stress, as a result of improved leaf turgor, carbon fixation and assimilation processes, through the augmentation of several enzymes related to these physiological processes.


Subject(s)
Heat-Shock Response , Vigna/physiology , gamma-Aminobutyric Acid/metabolism , Germination , Photosynthesis , Pollination , Thermotolerance , Vigna/growth & development
5.
J Exp Bot ; 68(8): 1927-1939, 2017 04 01.
Article in English | MEDLINE | ID: mdl-28499040

ABSTRACT

We simulated pre-breeding in evolving gene banks - populations of exotic and crop types undergoing optimal contribution selection for long-term genetic gain and management of population genetic diversity. The founder population was based on crosses between elite crop varieties and exotic lines of field pea (Pisum sativum) from the primary genepool, and was subjected to 30 cycles of recurrent selection for an economic index composed of four traits with low heritability: black spot resistance, flowering time and stem strength (measured on single plants), and grain yield (measured on whole plots). We compared a small population with low selection pressure, a large population with high selection pressure, and a large population with moderate selection pressure. Single seed descent was compared with S0-derived recurrent selection. Optimal contribution selection achieved higher index and lower population coancestry than truncation selection, which reached a plateau in index improvement after 40 years in the large population with high selection pressure. With optimal contribution selection, index doubled in 38 years in the small population with low selection pressure and 27-28 years in the large population with moderate selection pressure. Single seed descent increased the rate of improvement in index per cycle but also increased cycle time.


Subject(s)
Crops, Agricultural/genetics , Pisum sativum/genetics , Plant Breeding/methods , Seed Bank/organization & administration , Specimen Handling/methods , Genetic Variation
6.
Plant Biol (Stuttg) ; 18(3): 369-75, 2016 May.
Article in English | MEDLINE | ID: mdl-26588061

ABSTRACT

The chenopod Beta macrocarpa Guss (wild Swiss chard) is known for its salt tolerance, but the mechanisms involved are still debated. In order to elucidate the processes involved, we grew wild Swiss chard exposed to three salinity levels (0, 100 and 200 mm NaCl) for 45 days, and determined several physiological parameters at the end of this time. All plants survived despite reductions in growth, photosynthesis and stomatal conductance in plants exposed to salinity (100 and 200 mm NaCl). As expected, the negative effects of salinity were more pronounced at 200 mm than at 100 mm NaCl: (i) leaf apoplastic water content was maintained or increased despite a significant reduction in leaf water potential, revealing the halophytic character of B. macrocarpa; (ii) osmotic adjustment occurred, which presumably enhanced the driving force for water extraction from soil, and avoided toxic build up of Na(+) and Cl(-) in the mesophyll apoplast of leaves. Osmotic adjustment mainly occurred through accumulation of inorganic ions and to a lesser extent soluble sugars; proline was not implicated in osmotic adjustment. Overall, two important mechanisms of salt tolerance in B. macrocarpa were identified: osmotic and apoplastic water adjustment.


Subject(s)
Amaranthaceae/physiology , Salt Tolerance , Sodium Chloride/pharmacology , Water/physiology , Amaranthaceae/drug effects , Amaranthaceae/growth & development , Osmotic Pressure , Photosynthesis/drug effects , Plant Leaves/drug effects , Plant Leaves/growth & development , Plant Leaves/physiology , Salinity , Salt-Tolerant Plants , Stress, Physiological
7.
J Microsc ; 256(2): 100-10, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25142372

ABSTRACT

Computer aided x-ray microtomography is an increasingly popular method to investigate the structure of materials. Continuing improvements in the technique are resulting in increasingly larger data sets. The analysis of these data sets generally involves executing a static workflow for multiple samples and is generally performed manually by researchers. Executing these processes requires a significant time investment. A workflow which is able to automate the activities of the user would be useful. In this work, we have developed an automated workflow for the analysis of microtomography scanned bread dough data sets averaging 5 GB in size. Comparing the automated workflow with the manual workflow indicates a significant amount of the time spent (33% in the case of bread dough) on user interactions in manual method. Both workflows return similar results for porosity and pore frequency distribution. Finally, by implementing an automated workflow, users save the time which would be required to manually execute the workflow. This time can be spent on more productive tasks.


Subject(s)
Bread/analysis , X-Ray Microtomography/methods , Porosity
8.
Theor Appl Genet ; 2013 Nov 15.
Article in English | MEDLINE | ID: mdl-24231921

ABSTRACT

Pea weevil, Bruchus pisorum, is one of the limiting factors for field pea (Pisum sativum) cultivation in the world with pesticide application the only available method for its control. Resistance to pea weevil has been found in an accession of Pisum fulvum but transfer of this resistance to cultivated pea (P. sativum) is limited due to a lack of easy-to-use techniques for screening interspecific breeding populations. To address this problem, an interspecific population was created from a cross between cultivated field pea and P. fulvum (resistance source). Quantitative trait locus (QTL) mapping was performed to discover the regions associated with resistance to cotyledon, pod wall/seed coat and pod wall resistance. Three major QTLs, located on linkage groups LG2, LG4 and LG5 were found for cotyledon resistance explaining approximately 80 % of the phenotypic variation. Two major QTLs were found for pod wall/seed coat resistance on LG2 and LG5 explaining approximately 70 % of the phenotypic variation. Co-linearity of QTLs for cotyledon and pod wall/seed coat resistance suggested that the mechanism of resistance for these two traits might act through the same pathways. Only one QTL was found for pod wall resistance on LG7 explaining approximately 9 % of the phenotypic variation. This is the first report on the development of QTL markers to probe Pisum germplasm for pea weevil resistance genes. These flanking markers will be useful in accelerating the process of screening when breeding for pea weevil resistance.

9.
Plant Dis ; 95(2): 226, 2011 Feb.
Article in English | MEDLINE | ID: mdl-30743431

ABSTRACT

Bituminaria bituminosa (L.) Stirt. is a perennial legume known as Arabian pea that is used as a forage in arid areas and for stabilization of degraded soils. It is widely distributed in the Mediterranean Basin with wider adaptation across the Canary Islands (4). In July 2010, during a survey for phytoplasma, some Canary Island B. bituminosa plants with typical phytoplasma symptoms, including stunted growth with small leaves, shortened internodes, and bushy growth, were found in seed multiplication nurseries at Medina, Perth, Western Australia (115°48.5'E; 32°13.2'S). Two samples from plants with clear disease symptoms and two visibly healthy plants were collected and total DNA was extracted with the Illustra DNA extraction kit Phytopure (GE Healthcare) according to the manufacturer's instructions. Direct and nested PCR were used to test the presence of phytoplasma 16S rDNA in samples with universal primers P1/P7 and R16F2n/R16R2, respectively (1,3). The PCR amplifications from all diseased samples yielded an expected product of 1.8 kb by direct and 1.2 kb by nested PCR, but not from the healthy plant samples. The direct PCR product was used as a template DNA in sequencing and the DNA sequence was deposited in the NCBI GenBank (Accession No. HQ404357). Sequence homology analysis indicated there was a perfect match between the two isolates. BLAST search of the NCBI GenBank revealed that B. bituminosa phytoplasma shares >99% sequence identity with Crotalaria witches'-broom phytoplasma (Accession No. EU650181.1), pear decline phytoplasma (Accession No. EF656453.1), and Scaevola witches'-broom phytoplasma (Accession No. AB257291.1). On the basis of BLAST analyses of 16S rRNA gene sequences, B. bituminosa phytoplasma in Western Australia appears to belong to the peanut witches'-broom group (16SrII-D) of phytoplasma. Restriction fragment length polymorphism analysis was also performed on nested PCR products of two samples of B. bituminosa phytoplasma by separate digestion with HaeIII, Hind6I, HpaII, MboI, RsaI, Tru9I, and T-HB8I restriction enzymes. Samples yielded patterns similar to alfalfa witches'-broom phytoplasma (Accession No. AF438413) belonging to subgroup 16SrII-D (2). To our knowledge, this is the first report of a phytoplasma of the 16SrII-D group infecting B. bituminosa in Australia and should be referred to as "Bituminaria witches'-broom phytoplasma" (BiWB). This report also indicates that the occurrence of the phytoplasma in B. bituminosa may be widespread in the Canary Islands and other species of Bituminaria might be susceptible to infection by Bituminaria witches'-broom phytoplasma. References: (1) D. E. Gundersen and I.-M. Lee. Phytopathol. Mediterr. 35:144, 1996. (2) A. J. Khan et al. Phytopathology 92:1038, 2002. (3) I.-M. Lee et al. Int. J. Syst. Evol. Microbiol. 54:337, 2004. (4) P. Mendez et al. Grassland Sci. Eur. 11:300, 2006.

10.
Phytopathology ; 98(12): 1280-90, 2008 Dec.
Article in English | MEDLINE | ID: mdl-19000002

ABSTRACT

A hybrid mechanistic/statistical model was developed to predict vector activity and epidemics of vector-borne viruses spreading from external virus sources to an adjacent crop. The pathosystem tested was Bean yellow mosaic virus (BYMV) spreading from annually self-regenerating, legume-based pastures to adjacent crops of narrow-leafed lupin (Lupinus angustifolius) in the winter-spring growing season in a region with a Mediterranean-type environment where the virus persists over summer within dormant seed of annual clovers. The model uses a combination of daily rainfall and mean temperature during late summer and early fall to drive aphid population increase, migration of aphids from pasture to lupin crops, and the spread of BYMV. The model predicted time of arrival of aphid vectors and resulting BYMV spread successfully for seven of eight datasets from 2 years of field observations at four sites representing different rainfall and geographic zones of the southwestern Australian grainbelt. Sensitivity analysis was performed to determine the relative importance of the main parameters that describe the pathosystem. The hybrid mechanistic/statistical approach used created a flexible analytical tool for vector-mediated plant pathosystems that made useful predictions even when field data were not available for some components of the system.


Subject(s)
Aphids/virology , Lupinus/virology , Potyvirus/growth & development , Animals , Australia , Crops, Agricultural/virology , Geography , Insect Vectors/virology , Mediterranean Region , Models, Theoretical , Plant Diseases/virology
11.
Theor Appl Genet ; 110(2): 381-91, 2005 Jan.
Article in English | MEDLINE | ID: mdl-15551033

ABSTRACT

Cicer reticulatum, C. echinospermum, C. bijugum, C. judaicum, C. pinnatifidum, C. cuneatum and C. yamashitae are wild annual Cicer species and potential donors of valuable traits to improve chickpea (C. arietinum). As part of a large project to characterize and evaluate wild annual Cicer collections held in the world gene banks, AFLP markers were used to study genetic variation in these species. The main aim of this study was to characterize geographical patterns of genetic variation in wild annual Cicer germplasm. Phylogenetic analysis of 146 wild annual Cicer accessions (including two accessions in the perennial C. anatolicum and six cultivars of chickpea) revealed four distinct groups corresponding well to primary, secondary and tertiary gene pools of chickpea. Some possible misidentified or mislabelled accessions were identified, and ILWC 242 is proposed as a hybrid between C. reticulatum and C. echinospermum. The extent of genetic diversity varied considerably and was unbalanced between species with greatest genetic diversity found in C. judaicum. For the first time geographic patterns of genetic variation in C. reticulatum, C. echinospermum, C. bijugum, C. judaicum and C. pinnatifidum were established using AFLP markers. Based on the current collections the maximum genetic diversity of C. reticulatum, C. echinospermum, C. bijugum and C. pinnatifidum was found in southeastern Turkey, while Palestine was the centre of maximum genetic variation for C. judaicum. This information provides a solid basis for the design of future collections and in situ conservation programs for wild annual Cicer.


Subject(s)
Cicer/genetics , Genetic Variation , Geography , Polymorphism, Genetic , Random Amplified Polymorphic DNA Technique , DNA, Plant/genetics , Phylogeny , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...