Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nucl Med Commun ; 42(6): 699-706, 2021 Jun 01.
Article in English | MEDLINE | ID: mdl-33625180

ABSTRACT

[18F]NaF PET imaging is a useful tool for measuring regional bone metabolism. However, due to tracer in urine, [18F]NaF PET images of the hip reconstructed using filtered back projection (FBP) frequently show streaking artifacts in slices through the bladder leading to noisy time-activity curves unsuitable for quantification. This study compares differences between quantitative outcomes at the hip derived from images reconstructed using the FBP and ordered-subset expectation maximization (OSEM) methods. Dynamic [18F]NaF PET data at the hip for four postmenopausal women were reconstructed using FBP and nine variations of the OSEM algorithm (all combinations of 1, 5, 15 iterations and 10, 15, 21 subsets). Seven volumes of interest were placed in the hip. Bone metabolism was measured using standardized uptake values, Patlak analysis (Ki-PAT) and Hawkins model Ki-4k. Percentage differences between the standardized uptake values and Ki values from FBP and OSEM images were assessed. OSEM images appeared visually smoother and without the streaking artifacts seen with FBP. However, due to loss of counts, they failed to recover the quantitative values in VOIs close to the bladder, including the femoral head and femoral neck. This was consistent for all quantification methods. Volumes of interest farther from the bladder or larger and receiving greater counts showed good convergence with 5 iterations and 21 subsets. For VOIs close to the bladder, including the femoral neck and femoral head, 15 iterations and 10, 15 or 21 subsets were not enough to obtain OSEM images suitable for measuring bone metabolism and showed no improvement compared to FBP.


Subject(s)
Image Processing, Computer-Assisted , Positron-Emission Tomography , Algorithms , Humans , Middle Aged , Phantoms, Imaging
2.
Radiology ; 295(2): 328-338, 2020 05.
Article in English | MEDLINE | ID: mdl-32154773

ABSTRACT

Background Radiomic features may quantify characteristics present in medical imaging. However, the lack of standardized definitions and validated reference values have hampered clinical use. Purpose To standardize a set of 174 radiomic features. Materials and Methods Radiomic features were assessed in three phases. In phase I, 487 features were derived from the basic set of 174 features. Twenty-five research teams with unique radiomics software implementations computed feature values directly from a digital phantom, without any additional image processing. In phase II, 15 teams computed values for 1347 derived features using a CT image of a patient with lung cancer and predefined image processing configurations. In both phases, consensus among the teams on the validity of tentative reference values was measured through the frequency of the modal value and classified as follows: less than three matches, weak; three to five matches, moderate; six to nine matches, strong; 10 or more matches, very strong. In the final phase (phase III), a public data set of multimodality images (CT, fluorine 18 fluorodeoxyglucose PET, and T1-weighted MRI) from 51 patients with soft-tissue sarcoma was used to prospectively assess reproducibility of standardized features. Results Consensus on reference values was initially weak for 232 of 302 features (76.8%) at phase I and 703 of 1075 features (65.4%) at phase II. At the final iteration, weak consensus remained for only two of 487 features (0.4%) at phase I and 19 of 1347 features (1.4%) at phase II. Strong or better consensus was achieved for 463 of 487 features (95.1%) at phase I and 1220 of 1347 features (90.6%) at phase II. Overall, 169 of 174 features were standardized in the first two phases. In the final validation phase (phase III), most of the 169 standardized features could be excellently reproduced (166 with CT; 164 with PET; and 164 with MRI). Conclusion A set of 169 radiomics features was standardized, which enabled verification and calibration of different radiomics software. © RSNA, 2020 Online supplemental material is available for this article. See also the editorial by Kuhl and Truhn in this issue.


Subject(s)
Biomarkers/analysis , Image Processing, Computer-Assisted/standards , Software , Calibration , Fluorodeoxyglucose F18 , Humans , Lung Neoplasms/diagnostic imaging , Magnetic Resonance Imaging , Phantoms, Imaging , Phenotype , Positron-Emission Tomography , Radiopharmaceuticals , Reproducibility of Results , Sarcoma/diagnostic imaging , Tomography, X-Ray Computed
3.
EJNMMI Res ; 7(1): 60, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28748524

ABSTRACT

BACKGROUND: Measures of tumour heterogeneity derived from 18-fluoro-2-deoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) scans are increasingly reported as potential biomarkers of non-small cell lung cancer (NSCLC) for classification and prognostication. Several segmentation algorithms have been used to delineate tumours, but their effects on the reproducibility and predictive and prognostic capability of derived parameters have not been evaluated. The purpose of our study was to retrospectively compare various segmentation algorithms in terms of inter-observer reproducibility and prognostic capability of texture parameters derived from non-small cell lung cancer (NSCLC) 18F-FDG PET/CT images. Fifty three NSCLC patients (mean age 65.8 years; 31 males) underwent pre-chemoradiotherapy 18F-FDG PET/CT scans. Three readers segmented tumours using freehand (FH), 40% of maximum intensity threshold (40P), and fuzzy locally adaptive Bayesian (FLAB) algorithms. Intraclass correlation coefficient (ICC) was used to measure the inter-observer variability of the texture features derived by the three segmentation algorithms. Univariate cox regression was used on 12 commonly reported texture features to predict overall survival (OS) for each segmentation algorithm. Model quality was compared across segmentation algorithms using Akaike information criterion (AIC). RESULTS: 40P was the most reproducible algorithm (median ICC 0.9; interquartile range [IQR] 0.85-0.92) compared with FLAB (median ICC 0.83; IQR 0.77-0.86) and FH (median ICC 0.77; IQR 0.7-0.85). On univariate cox regression analysis, 40P found 2 out of 12 variables, i.e. first-order entropy and grey-level co-occurence matrix (GLCM) entropy, to be significantly associated with OS; FH and FLAB found 1, i.e., first-order entropy. For each tested variable, survival models for all three segmentation algorithms were of similar quality, exhibiting comparable AIC values with overlapping 95% CIs. CONCLUSIONS: Compared with both FLAB and FH, segmentation with 40P yields superior inter-observer reproducibility of texture features. Survival models generated by all three segmentation algorithms are of at least equivalent utility. Our findings suggest that a segmentation algorithm using a 40% of maximum threshold is acceptable for texture analysis of 18F-FDG PET in NSCLC.

4.
AJR Am J Roentgenol ; 207(3): 534-43, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27305342

ABSTRACT

OBJECTIVE: Texture analysis involves the mathematic processing of medical images to derive sets of numeric quantities that measure heterogeneity. Studies on lung cancer have shown that texture analysis may have a role in characterizing tumors and predicting patient outcome. This article outlines the mathematic basis of and the most recent literature on texture analysis in lung cancer imaging. We also describe the challenges facing the clinical implementation of texture analysis. CONCLUSION: Texture analysis of lung cancer images has been applied successfully to FDG PET and CT scans. Different texture parameters have been shown to be predictive of the nature of disease and of patient outcome. In general, it appears that more heterogeneous tumors on imaging tend to be more aggressive and to be associated with poorer outcomes and that tumor heterogeneity on imaging decreases with treatment. Despite these promising results, there is a large variation in the reported data and strengths of association.


Subject(s)
Diagnostic Imaging/methods , Image Interpretation, Computer-Assisted , Lung Neoplasms/diagnostic imaging , Humans , Mathematics , Predictive Value of Tests
SELECTION OF CITATIONS
SEARCH DETAIL
...