Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Hazard Mater ; 469: 133995, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38492390

ABSTRACT

Low-pH cement is being studied in radioactive waste repositories. The belite-rich cement (BRC) recently gained attention due to its higher CO2 sequestration and low pH attainment under carbonation exposure. Therefore, this study evaluated the effects of pH and temperature on cesium immobilization of BRC. High pH (12.6) and low pH (9.9) BRC were produced via air curing and carbonation treatment, respectively. The high and low pH BRC samples were placed in a leaching environment at 25 °C and 45 °C for 90 days. An inverse correlation between pH and cesium mobilization of BRC was observed. The high pH BRC achieved the lowest effective diffusion coefficient (4.05E-09 cm2/s), whereas the highest value (2.64E-07 cm2/s) was achieved in case of low pH BRC. The physicochemical and morphological properties unveiled the decrease in Si/Ca ratio of gel, precipitation of Ca2+ ions in calcite formation, and increment in pore structure connectivity (pore size > 100 nm) in low pH BRC. However, the high pH BRC demonstrated the high Si/Ca ratio in C-S-H gel, hydroxide phases and higher disconnected pores. Thermodynamic modeling revealed the presence of significant carbonated phases beyond 15% CO2 uptake. The findings contributed to the BRC's feasibility in developing nuclear waste storage facility.

2.
Environ Sci Pollut Res Int ; 29(29): 44067-44090, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35122649

ABSTRACT

Mining and extraction of stones and minerals play a significant role in many countries economic growth in the world. The production of dolomite minerals in various industries in India and other countries produces vast amounts of waste in different fractions. Disposal of these types of industrial wastes in an immense quantity causes environmental pollution. The performance of dolomite mining residues on concrete properties as a fine aggregate substitute was examined. The microstructural analysis was conducted on the concrete samples to find the effect of dolomite mining residues in concrete. The stress-strain behaviour of the dolomite mining residues concrete was studied. The effect of exposure to elevated temperature and freeze-thaw on concrete properties containing dolomite mining residues was found up to 100% at 10% incremental order. The thermogravimetric analysis (TGA) and differential thermogravimetry (DTG) tests were conducted on the dolomite mining residues and concrete samples. As a test result, concrete properties influence with the incorporation of the dolomite mining residues as a substitution of river sand, but no significant effect is observed in the concrete properties containing 10% dolomite mining residues. Up to 10% of dolomite production waste can be used as a sand substitute in concrete and other applications for sustainable development.


Subject(s)
Construction Materials , Sand , Calcium Carbonate , Construction Materials/analysis , Industrial Waste/analysis , Magnesium , Minerals , Temperature
3.
Materials (Basel) ; 14(13)2021 Jun 27.
Article in English | MEDLINE | ID: mdl-34199086

ABSTRACT

This study presents an investigation of the effects of the precursor, alkalinity and temperature on the rheology and structural buildup of alkali activated materials. Here, 100% fly ash, 100% slag and blended mixes of fly ash and slag were activated by 4 M, 6 M, 8 M or 10 M (only for sodium hydroxide) solutions at 25 °C, 35 °C, 45 °C and 55 °C. The rheological properties were investigated to obtain the flow curves, viscosity, storage modulus, and loss factor of these materials. The results showed that for the presence of slag, a higher molarity of the alkali activating solution and a high temperature all caused greater interparticle force, leading to an increase in the shear stress and viscosity of the alkali activated materials. It was also observed that slag had the greatest effect on the increase in the storage modulus of the blended mixes. Furthermore, the higher alkalinity and temperature levels were instrumental in initiating the dissolution of fly ash and improving its rate of structural buildup. Moreover, the interdependence of various factors showed that the type of precursor, as well as the concentration of alkali activating solution, were the primary influencing factors on the polymerization process, as well as the rheological measurements of alkali-activated materials.

4.
Materials (Basel) ; 14(3)2021 Jan 27.
Article in English | MEDLINE | ID: mdl-33513951

ABSTRACT

This study assesses the characteristics of preplaced aggregate concrete prepared with alkali-activated cement grout as an adhesive binder. Various binary blends of slag and fly ash without fine aggregate as a filler material were considered along with different solution-to-solid ratios. The properties of fresh and hardened grout along with the properties of hardened preplaced concrete were investigated, as were the compressive strength, ultrasonic pulse velocity, density, water absorption and total voids of the preplaced concrete. The results indicated that alkali-activated cement grout has better flowability characteristics and compressive strength than conventional cement grout. As a result, the mechanical performance of the preplaced aggregate concrete was significantly improved. The results pertaining to the water absorption and porosity revealed that the alkali-activated preplaced aggregate concrete is more resistant to water permeation. The filling capacity based on the ultrasonic pulse velocity value is discussed to comment on the wrapping ability of alkali-activated cement grout.

5.
Materials (Basel) ; 13(6)2020 Mar 23.
Article in English | MEDLINE | ID: mdl-32210208

ABSTRACT

The aim of the present study is to investigate the potential of sea water as a feasible alternative to produce alkali-activated fly ash material. The alkali-activated fly ash binder was fabricated by employing conventional pure water, tap water, and sea water based alkali activating solution. The characteristics of alkali-activated materials were examined by employing compressive strength, mercury intrusion porosimetry, XRD, FT-IR, and 29Si NMR along with ion chromatography for chloride immobilization. The results provided new insights demonstrating that sea water can be effectively used to produce alkali activated fly ash material. The presence of chloride in sea water contributed to increase compressive strength, refine microstructure, and mineralogical characteristics. Furthermore, a higher degree of polymerization on the sea water-based sample was observed by FT-IR and 29Si NMR analysis. However, the higher amount of free chloride ion even after immobilization in sea water-based alkali-activated material, should be considered before application in reinforced structural elements.

6.
Biochem Biophys Res Commun ; 523(2): 398-404, 2020 03 05.
Article in English | MEDLINE | ID: mdl-31870546

ABSTRACT

The role of protein kinase N1 (PKN1) in cell aggregation and spheroid formation was investigated using mouse embryonic fibroblasts (MEFs) deficient in kinase activity caused by a point mutation (T778A) in the activation loop. Wild type (WT) MEFs formed cell aggregates within a few hours in suspension cultures placed in poly-2-hydroxyethylmethacrylate (poly-HEMA) coated flat-bottom dishes. By contrast, PKN1[T778A] (PKN1 T778A/T778A homozygous knock-in) MEFs showed significantly delayed aggregate formation and higher susceptibility to cell death. Video analysis of suspension cultures revealed decreased cell motility and lesser frequency of cell-cell contact in PKN1[T778A] MEFs compared to that in WT MEFs. Aggregate formation of PKN1[T778A] MEFs was compensated by shaking the cell suspension. When cultured in U-shaped ultra-low attachment well plates, initially larger-sized and loosely packed aggregates of WT MEFs underwent compaction resulting in a single round spheroid. On the other hand, image-based quantitative analysis of PKN1[T778A] MEFs revealed irregular compaction with decreased roundness, solidity, and sphericity within 24 h. Flow cytometry of PKN1[T778A] MEFs revealed decreased surface-expression of N-cadherin and integrins α5 and αV. These results suggest that kinase activity of PKN1 controls cell aggregation and spheroid compaction in MEF suspension culture, possibly by regulating the cell migration and cell-surface expression of N-cadherin and integrins.


Subject(s)
Protein Kinase C/metabolism , Animals , Cadherins/metabolism , Cell Aggregation/physiology , Cell Membrane/metabolism , Cell Survival/physiology , Cells, Cultured , Fibroblasts/cytology , Fibroblasts/enzymology , Gene Knock-In Techniques , Integrin alpha5/metabolism , Integrin alphaV/metabolism , Mice , Mice, Mutant Strains , Point Mutation , Protein Kinase C/deficiency , Protein Kinase C/genetics , Spheroids, Cellular/cytology , Spheroids, Cellular/enzymology
7.
Sci Rep ; 9(1): 13977, 2019 Sep 27.
Article in English | MEDLINE | ID: mdl-31562379

ABSTRACT

Protein kinase N1 (PKN1) knockout (KO) mice spontaneously form germinal centers (GCs) and develop an autoimmune-like disease with age. Here, we investigated the function of PKN1 kinase activity in vivo using aged mice deficient in kinase activity resulting from the introduction of a point mutation (T778A) in the activation loop of the enzyme. PKN1[T778A] mice reached adulthood without external abnormalities; however, the average spleen size and weight of aged PKN1[T778A] mice increased significantly compared to aged wild type (WT) mice. Histologic examination and Southern blot analyses of spleens showed extramedullary hematopoiesis and/or lymphomagenesis in some cases, although without significantly different incidences between PKN1[T778A] and WT mice. Additionally, flow cytometry revealed increased numbers in B220+, CD3+, Gr1+ and CD193+ leukocytes in the spleen of aged PKN1[T778A] mice, whereas the number of lymphocytes, neutrophils, eosinophils, and monocytes was reduced in the peripheral blood, suggesting an advanced impairment of leukocyte trafficking with age. Moreover, aged PKN1[T778A] mice showed no obvious GC formation nor autoimmune-like phenotypes, such as glomerulonephritis or increased anti-dsDNA antibody titer, in peripheral blood. Our results showing phenotypic differences between aged Pkn1-KO and PKN1[T778A] mice may provide insight into the importance of PKN1-specific kinase-independent functions in vivo.


Subject(s)
Leukopenia/genetics , Protein Kinase C/genetics , Splenomegaly/genetics , Age Factors , Animals , Gene Knock-In Techniques , Germinal Center/metabolism , Leukopenia/metabolism , Mice , Mice, Knockout , Phosphorylation , Protein Kinase C/metabolism , Signal Transduction/physiology , Splenomegaly/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...