Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Analyst ; 149(10): 2842-2854, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38600773

ABSTRACT

Self-assembled monolayers (SAM) are ubiquitous in studies of modified electrodes for sensing, electrocatalysis, and environmental and energy applications. However, determining their adsorptive stability is crucial to ensure robust experiments. In this work, the stable potential window (SPW) in which a SAM-covered electrode can function without inducing SAM desorption was determined for aromatic SAMs on gold electrodes in aqueous and non-aqueous solvents. The SPWs were determined by employing cyclic voltammetry, attenuated total reflectance surface-enhanced infrared absorption spectroscopy (ATR-SEIRAS), and surface plasmon resonance (SPR). The electrochemical and spectroscopic findings concluded that all the aromatic SAMs used displayed similar trends and SPWs. In aqueous systems, the SPW lies between the reductive desorption and oxidative desorption, with pH being the decisive factor affecting the range of the SPW, with the widest SPW observed at pH 1. In the non-aqueous electrolytes, the desorption of SAMs was observed to be slow and progressive. The polarity of the solvent was the main factor in determining the SPW. The lower the polarity of the solvent, the larger the SPW, with 1-butanol displaying the widest SPW. This work showcases the power of spectroelectrochemical analysis and provides ample future directions for the use of non-polar solvents to increase SAM stability in electrochemical applications.

2.
Anal Chem ; 96(6): 2435-2444, 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38294875

ABSTRACT

The ubiquity of graphitic materials in electrochemistry makes it highly desirable to probe their interfacial behavior under electrochemical control. Probing the dynamics of molecules at the electrode/electrolyte interface is possible through spectroelectrochemical approaches involving surface-enhanced infrared absorption spectroscopy (SEIRAS). Usually, this technique can only be done on plasmonic metals such as gold or carbon nanoribbons, but a more convenient substrate for carbon electrochemical studies is needed. Here, we expanded the scope of SEIRAS by introducing a robust hybrid graphene-on-gold substrate, where we monitored electrografting processes occurring at the graphene/electrolyte interface. These electrodes consist of graphene deposited onto a roughened gold-sputtered internal reflection element (IRE) for attenuated total reflectance (ATR) SEIRAS. The capabilities of the graphene-gold IRE were demonstrated by successfully monitoring the electrografting of 4-amino-2,2,6,6-tetramethyl-1-piperidine N-oxyl (4-amino-TEMPO) and 4-nitrobenzene diazonium (4-NBD) in real time. These grafts were characterized using cyclic voltammetry and ATR-SEIRAS, clearly showing the 1520 and 1350 cm-1 NO2 stretches for 4-NBD and the 1240 cm-1 C-C, C-C-H, and N-È® stretch for 4-amino-TEMPO. Successful grafts on graphene did not show the SEIRAS effect, while grafting on gold was not stable for TEMPO and had poorer resolution than on graphene-gold for 4-NBD, highlighting the uniqueness of our approach. The graphene-gold IRE is proficient at resolving the spectral responses of redox transformations, unambiguously demonstrating the real-time detection of surface processes on a graphitic electrode. This work provides ample future directions for real-time spectroelectrochemical investigations of carbon electrodes used for sensing, energy storage, electrocatalysis, and environmental applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...