Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 23(2)2023 Jan 09.
Article in English | MEDLINE | ID: mdl-36679565

ABSTRACT

An intelligent transportation system (ITS) aims to improve traffic efficiency by integrating innovative sensing, control, and communications technologies. The industrial Internet of things (IIoT) and Industrial Revolution 4.0 recently merged to design the industrial Internet of things-intelligent transportation system (IIoT-ITS). IIoT sensing technologies play a significant role in acquiring raw data. The application continuously performs the complex task of managing traffic flows effectively based on several parameters, including the number of vehicles in the system, their location, and time. Traffic density estimation (TDE) is another important derived parameter desirable to keep track of the dynamic state of traffic volume. The expanding number of vehicles based on wireless connectivity provides new potential to predict traffic density more accurately and in real time as previously used methodologies. We explore the topic of assessing traffic density by using only a few simple metrics, such as the number of surrounding vehicles and disseminating beacons to roadside units and vice versa. This research paper investigates TDE techniques and presents a novel Markov model-based TDE technique for ITS. Finally, an OMNET++-based approach with an implementation of a significant modification of a traffic model combined with mathematical modeling of the Markov model is presented. It is intended for the study of real-world traffic traces, the identification of model parameters, and the development of simulated traffic.


Subject(s)
Benchmarking , Internet of Things , Industry , Information Technology , Intelligence
2.
Comput Intell Neurosci ; 2022: 3836539, 2022.
Article in English | MEDLINE | ID: mdl-36082344

ABSTRACT

With an astounding five million fatal cases every year, lung cancer is among the leading causes of mortality worldwide for both men and women. The diagnosis of lung illnesses can benefit from the information a computed tomography (CT) scan can offer. The major goals of this study are to diagnose lung cancer and its seriousness and to identify malignant lung nodules from the provided input lung picture. This paper applies unique deep learning techniques to identify the exact location of the malignant lung nodules. Using a DenseNet model, mixed ground glass is analyzed in low-dose, low-resolution CT scan images of nodules (mGGNs) with a slice thickness of 5 mm in this study. This was done to categorize and identify many histological subtypes of lung cancer. Low-resolution CT scans are used to pathologically classify invasive adenocarcinoma (IAC) and minimally invasive adenocarcinoma (MIA). 105 low-resolution CT images with 5 mm thick slices from 105 patients at Lishui Central Hospital were selected. To detect and distinguish, IAC and MIA, extend and enhance deep learning two- and three-dimensional DenseNet models are used. The two-dimensional DenseNet model was shown to perform much better than the three-dimensional DenseNet model in terms of classification accuracy (76.67%), sensitivity (63.3%), specificity (100%), and area under the receiver operating characteristic curve (0.88). Finding the histological subtypes of persons with lung cancer should aid doctors in making a more precise diagnosis, even if the image quality is not outstanding.


Subject(s)
Adenocarcinoma , Deep Learning , Lung Neoplasms , Adenocarcinoma/pathology , Female , Humans , Lung Neoplasms/diagnostic imaging , Male , Neoplasm Invasiveness , Retrospective Studies , Tomography, X-Ray Computed/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...