Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Evol Biol ; 2014: 284170, 2014.
Article in English | MEDLINE | ID: mdl-24719775

ABSTRACT

Mycobacterium tuberculosis (Mtb) is a pathogenic bacteria species in the genus Mycobacterium and the causative agent of most cases of tuberculosis. Tuberculosis (TB) is the leading cause of death in the world from a bacterial infectious disease. This antibiotic resistance strain lead to development of the new antibiotics or drug molecules which can kill or suppress the growth of Mycobacterium tuberculosis. We have performed an in silico comparative analysis of metabolic pathways of the host Homo sapiens and the pathogen Mycobacterium tuberculosis (H37Rv). Novel efforts in developing drugs that target the intracellular metabolism of M. tuberculosis often focus on metabolic pathways that are specific to M. tuberculosis. We have identified five unique pathways for Mycobacterium tuberculosis having a number of 60 enzymes, which are nonhomologous to Homo sapiens protein sequences, and among them there were 55 enzymes, which are nonhomologous to Homo sapiens protein sequences. These enzymes were also found to be essential for survival of the Mycobacterium tuberculosis according to the DEG database. Further, the functional analysis using Uniprot showed involvement of all the unique enzymes in the different cellular components.

2.
Enzyme Res ; 2012: 138634, 2012.
Article in English | MEDLINE | ID: mdl-23125919

ABSTRACT

A thermophilic fungal strain producing polygalacturonase was isolated after primary screening of 40 different isolates. The fungus was identified as Rhizomucor pusilis by Microbial Type Culture Collection (MTCC), Chandigarh, India. An extracellular polygalacturonase (PGase) from R. pusilis was purified to homogeneity by two chromatographic steps using Sephadex G-200 and Sephacryl S-100. The purified enzyme was a monomer with a molecular weight of 32 kDa. The PGase was optimally active at 55°C and at pH 5.0. It was stable up to 50°C for 120 min of incubation and pH condition between 4.0 and 5.0. The stability of PGase decreases rapidly above 60°C and above pH 5.0. The apparent K(m) and V(max) values were 0.22 mg/mL and 4.34 U/mL, respectively. It was the first time that a polygalacturonase enzyme was purified in this species. It would be worthwhile to exploit this strain for polygalacturonase production. Polygalacturonase from this strain can be recommended for the commercial production because of its constitutive and less catabolically repressive nature, thermostability, wide range of pH, and lower K(m) properties. However, scale-up studies are needed for the better output for commercial production.

SELECTION OF CITATIONS
SEARCH DETAIL
...