Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Neuroinflammation ; 13(1): 66, 2016 Mar 24.
Article in English | MEDLINE | ID: mdl-27009332

ABSTRACT

BACKGROUND: Microglia are the "professional" phagocytes of the CNS. Phagocytosis is crucial for normal CNS development and maintenance, but it can be either beneficial or detrimental after injury or disease. For instance, white matter damage releases myelin debris that must be cleared by microglia in order for re-myelination to occur. However, phagocytosis can also produce damaging reactive oxygen species (ROS). Furthermore, microglia can acquire pro-inflammatory (M1) or anti-inflammatory (M2) activation states that affect cell functions. Although microglia are exposed to a changing cytokine environment after injury or disease, little is known about the molecular and functional consequences. Therefore, we applied several microglial activation paradigms, with or without myelin debris. We assessed (i) gene expression changes reflecting microglial activation and inflammatory states, and receptors and enzymes related to phagocytosis and ROS production, (ii) myelin phagocytosis and production of ROS, and (iii) expression and contributions of several ion channels that are considered potential targets for regulating microglial behavior. METHODS: Primary rat microglia were exposed to cytokines, individually or sequentially. First, responses to individual M1 or M2 stimuli were compared: IFN-γ plus TNF-α ("I + T"; M1 activation), interleukin-4 (M2a/alternative activation), and interleukin-10 (M2c/acquired deactivation). Second, sequential cytokine addition was used to assess microglia repolarization and cell functions. The paradigms were M2a→M1, M2c→M1, M1→M2a, and M1→M2c. RESULTS: M1 stimulation increased pro-inflammatory genes, phagocytosis, and ROS, as well as expression of Kv1.3, KCa3.1, and Kir2.1 channels. M2a stimulation increased anti-inflammatory genes, ROS production, and Kv1.3 and KCa3.1 expression. Myelin phagocytosis enhanced the M1 profile and dampened the M2a profile, and both phagocytosis and ROS production were dependent on NOX enzymes and Kir2.1 and CRAC channels. Importantly, microglia showed some capacity for re-polarization between M1 and M2a states, based on gene expression changes, myelin phagocytosis, and ROS production. CONCLUSIONS: In response to polarizing and re-polarizing cytokine treatments, microglia display complex changes in gene transcription profiles, phagocytic capacity, NOX-mediated ROS production, and in ion channels involved in microglial activation. Because these changes might affect microglia-mediated CNS inflammation, they should be considered in future experimental, pre-clinical studies.


Subject(s)
Cytokines/pharmacology , Microglia/drug effects , Animals , Gene Expression/drug effects , Inflammation/chemically induced , Inflammation/pathology , Ion Channels/drug effects , Ion Channels/metabolism , Myelin Sheath/metabolism , Phagocytosis/drug effects , Primary Cell Culture , Rats , Rats, Sprague-Dawley , Reactive Oxygen Species/metabolism , Stimulation, Chemical
2.
PLoS One ; 9(8): e106087, 2014.
Article in English | MEDLINE | ID: mdl-25148577

ABSTRACT

Microglia rapidly respond to CNS injury and disease and can assume a spectrum of activation states. While changes in gene expression and production of inflammatory mediators have been extensively described after classical (LPS-induced) and alternative (IL4-induced) microglial activation, less is known about acquired de-activation in response to IL10. It is important to understand how microglial activation states affect their migration and invasion; crucial functions after injury and in the developing CNS. We reported that LPS-treated rat microglia migrate very poorly, while IL4-treated cells migrate and invade much better. Having discovered that the lamellum of migrating microglia contains a large ring of podosomes--microscopic structures that are thought to mediate adhesion, migration and invasion--we hypothesized that IL4 and IL10 would differentially affect podosome expression, gene induction, migration and invasion. Further, based on the enrichment of the KCa2.3/SK3 Ca2+-activated potassium channel in microglial podosomes, we predicted that it regulates migration and invasion. We found both similarities and differences in gene induction by IL4 and IL10 and, while both cytokines increased migration and invasion, only IL10 affected podosome expression. KCa2.3 currents were recorded in microglia under all three activation conditions and KCNN3 (KCa2.3) expression was similar. Surprisingly then, of three KCa2.3 inhibitors (apamin, tamapin, NS8593), only NS8593 abrogated the increased migration and invasion of IL4 and IL10-treated microglia (and invasion of unstimulated microglia). This discrepancy was explained by the observed block of TRPM7 currents in microglia by NS8593, which occurred under all three activation conditions. A similar inhibition of both migration and invasion was seen with a TRPM7 inhibitor (AA-861) that does not block KCa2.3 channels. Thus, we conclude that TRPM7 (not KCa2.3) contributes to the enhanced ability of microglia to migrate and invade when in anti-inflammatory states. This will be an important consideration in developing TRPM7 inhibitors for treating CNS injury.


Subject(s)
Interleukin-10/pharmacology , Interleukin-4/pharmacology , Microglia/metabolism , Small-Conductance Calcium-Activated Potassium Channels/metabolism , TRPM Cation Channels/metabolism , 1-Naphthylamine/analogs & derivatives , 1-Naphthylamine/pharmacology , Animals , Anti-Inflammatory Agents/pharmacology , Apamin/pharmacology , Benzoquinones/pharmacology , Cell Movement/drug effects , Cell Movement/genetics , Cells, Cultured , Gene Expression Regulation/drug effects , Microglia/drug effects , Microglia/pathology , Patch-Clamp Techniques , Podosomes/drug effects , Podosomes/metabolism , Potassium Channel Blockers/pharmacology , Rats, Sprague-Dawley , Small-Conductance Calcium-Activated Potassium Channels/antagonists & inhibitors , Small-Conductance Calcium-Activated Potassium Channels/genetics , TRPM Cation Channels/genetics
3.
J Neuroinflammation ; 9: 250, 2012 Nov 17.
Article in English | MEDLINE | ID: mdl-23158496

ABSTRACT

BACKGROUND: Microglia migrate during brain development and after CNS injury, but it is not known how they degrade the extracellular matrix (ECM) to accomplish this. Podosomes are tiny structures with the unique ability to adhere to and dissolve ECM. Podosomes have a two-part architecture: a core that is rich in F-actin and actin-regulatory molecules (for example, Arp2/3), surrounded by a ring with adhesion and structural proteins (for example, talin, vinculin). We recently discovered that the lamellum at the leading edge of migrating microglia contains a large F-actin-rich superstructure ('podonut') composed of many podosomes. Microglia that expressed podosomes could degrade ECM molecules. Finely tuned Ca(2+) signaling is important for cell migration, cell-substrate adhesion and contraction of the actomyosin network. Here, we hypothesized that podosomes contain Ca(2+)-signaling machinery, and that podosome expression and function depend on Ca(2+) influx and specific ion channels. METHODS: High-resolution immunocytochemistry was used on rat microglia to identify podosomes and novel molecular components. A pharmacological toolbox was applied to functional assays. We analyzed roles of Ca(2+)-entry pathways and ion channels in podosome expression, microglial migration into a scratch-wound, transmigration through pores in a filter, and invasion through Matrigel™-coated filters. RESULTS: Microglial podosomes were identified using well-known components of the core (F-actin, Arp2) and ring (talin, vinculin). We discovered four novel podosome components related to Ca(2+) signaling. The core contained calcium release activated calcium (CRAC; Orai1) channels, calmodulin, small-conductance Ca(2+)-activated SK3 channels, and ionized Ca(2+) binding adapter molecule 1 (Iba1), which is used to identify microglia in the CNS. The Orai1 accessory molecule, STIM1, was also present in and around podosomes. Podosome formation was inhibited by removing external Ca(2+) or blocking CRAC channels. Blockers of CRAC channels inhibited migration and invasion, and SK3 inhibition reduced invasion. CONCLUSIONS: Microglia podosome formation, migration and/or invasion require Ca(2+) influx, CRAC, and SK3 channels. Both channels were present in microglial podosomes along with the Ca(2+)-regulated molecules, calmodulin, Iba1 and STIM1. These results suggest that the podosome is a hub for sub-cellular Ca(2+)-signaling to regulate ECM degradation and cell migration. The findings have broad implications for understanding migration mechanisms of cells that adhere to, and dissolve ECM.


Subject(s)
Calcium Signaling/physiology , Calcium/metabolism , Cell Movement/physiology , Cytoplasmic Structures/metabolism , Microglia/cytology , Microglia/physiology , Actin Cytoskeleton/metabolism , Actins/metabolism , Animals , Animals, Newborn , Brain/cytology , Calcium Channels/metabolism , Calcium-Binding Proteins/metabolism , Calmodulin/metabolism , Cell Adhesion/physiology , Cells, Cultured , Cicatrix/metabolism , Cicatrix/pathology , Extracellular Matrix/metabolism , Fibronectins/metabolism , Microfilament Proteins/metabolism , ORAI1 Protein , Rats , Rats, Sprague-Dawley , Small-Conductance Calcium-Activated Potassium Channels/metabolism , TRPM Cation Channels/metabolism
4.
J Neuroinflammation ; 9: 190, 2012 Aug 08.
Article in English | MEDLINE | ID: mdl-22873355

ABSTRACT

BACKGROUND: To perform their functions during development and after central nervous system injury, the brain's immune cells (microglia) must migrate through dense neuropil and extracellular matrix (ECM), but it is not known how they degrade the ECM. In several cancer cell lines and peripheral cells, small multi-molecular complexes (invadopodia in cancer cells, podosomes in nontumor cells) can both adhere to and dissolve the ECM. Podosomes are tiny multi-molecular structures (0.4 to 1 µm) with a core, rich in F-actin and its regulatory molecules, surrounded by a ring containing adhesion and structural proteins. METHODS: Using rat microglia, we performed several functional assays: live cell imaging for chemokinesis, degradation of the ECM component, fibronectin, and chemotactic invasion through Matrigel™, a basement membrane type of ECM. Fluorescent markers were used with high-resolution microscopy to identify podosomes and their components. RESULTS: The fan-shaped lamella at the leading edge of migrating microglia contained a large F-actin-rich superstructure composed of many tiny (<1 µm) punctae that were adjacent to the substrate, as expected for cell-matrix contact points. This superstructure (which we call a podonut) was restricted to cells with lamellae, and conversely almost every lamella contained a podonut. Each podonut comprised hundreds of podosomes, which could also be seen individually adjacent to the podonut. Microglial podosomes contained hallmark components of these structures previously seen in several cell types: the plaque protein talin in the ring, and F-actin and actin-related protein (Arp) 2 in the core. In microglia, podosomes were also enriched in phosphotyrosine residues and three tyrosine-kinase-regulated proteins: tyrosine kinase substrate with five Src homology 3 domains (Tks5), phosphorylated caveolin-1, and Nox1 (nicotinamide adenine dinucleotide phosphate oxidase 1). When microglia expressed podonuts, they were able to degrade the ECM components, fibronectin, and Matrigel™. CONCLUSION: The discovery of functional podosomes in microglia has broad implications, because migration of these innate immune cells is crucial in the developing brain, after damage, and in disease states involving inflammation and matrix remodeling. Based on the roles of invadosomes in peripheral tissues, we propose that microglia use these complex structures to adhere to and degrade the ECM for efficient migration.


Subject(s)
Cell Movement/physiology , Extracellular Matrix/metabolism , Microglia/metabolism , Animals , Cell Surface Extensions/metabolism , Cell Surface Extensions/pathology , Cells, Cultured , Chemotaxis/physiology , Extracellular Matrix/pathology , Microglia/pathology , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...