Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Oncogenesis ; 6(1): e293, 2017 Jan 30.
Article in English | MEDLINE | ID: mdl-28134934

ABSTRACT

PRH/HHEX (proline-rich homeodomain protein/haematopoietically expressed homeobox protein) is a transcription factor that controls cell proliferation, cell differentiation and cell migration. Our previous work has shown that in haematopoietic cells, Protein Kinase CK2-dependent phosphorylation of PRH results in the inhibition of PRH DNA-binding activity, increased cleavage of PRH by the proteasome and the misregulation of PRH target genes. Here we show that PRH and hyper-phosphorylated PRH are present in normal prostate epithelial cells, and that hyper-phosphorylated PRH levels are elevated in benign prostatic hyperplasia, prostatic adenocarcinoma, and prostate cancer cell lines. A reduction in PRH protein levels increases the motility of normal prostate epithelial cells and conversely, PRH over-expression inhibits prostate cancer cell migration and blocks the ability of these cells to invade an extracellular matrix. We show that CK2 over-expression blocks the repression of prostate cancer cell migration and invasion by PRH. In addition, we show that PRH knockdown in normal immortalised prostate cells results in an increase in the population of cells capable of colony formation in Matrigel, as well as increased cell invasion and decreased E-cadherin expression. Inhibition of CK2 reduces PRH phosphorylation and reduces prostate cell proliferation but the effects of CK2 inhibition on cell proliferation are abrogated in PRH knockdown cells. These data suggest that the increased phosphorylation of PRH in prostate cancer cells increases both cell proliferation and tumour cell migration/invasion.

2.
Oncogene ; 33(49): 5592-600, 2014 Dec 04.
Article in English | MEDLINE | ID: mdl-24240683

ABSTRACT

PRH/HHex (proline-rich homeodomain protein) is a transcription factor that controls cell proliferation and cell differentiation in a variety of tissues. Aberrant subcellular localisation of PRH is associated with breast cancer and thyroid cancer. Further, in blast crisis chronic myeloid leukaemia, and a subset of acute myeloid leukaemias, PRH is aberrantly localised and its activity is downregulated. Here we show that PRH is involved in the regulation of cell migration and cancer cell invasion. We show for the first time that PRH is expressed in prostate cells and that a decrease in PRH protein levels increases the migration of normal prostate epithelial cells. We show that a decrease in PRH protein levels also increases the migration of normal breast epithelial cells. Conversely, PRH overexpression inhibits cell migration and cell invasion by PC3 and DU145 prostate cancer cells and MDA-MB-231 breast cancer cells. Previous work has shown that the transforming growth factor-ß co-receptor Endoglin inhibits the migration of prostate and breast cancer cells. Here we show that PRH can bind to the Endoglin promoter in immortalised prostate and breast cells. PRH overexpression in these cells results in increased Endoglin protein expression, whereas PRH knockdown results in decreased Endoglin protein expression. Moreover, we demonstrate that Endoglin overexpression abrogates the increased migration shown by PRH knockdown cells. Our data suggest that PRH controls the migration of multiple epithelial cell lineages in part at least through the direct transcriptional regulation of Endoglin. We discuss these results in terms of the functions of PRH in normal cells and the mislocalisation of PRH seen in multiple cancer cell types.


Subject(s)
Antigens, CD/metabolism , Breast Neoplasms/metabolism , Gene Expression Regulation, Neoplastic , Homeodomain Proteins/physiology , Prostatic Neoplasms/metabolism , Receptors, Cell Surface/metabolism , Transcription Factors/physiology , Transcription, Genetic , Cell Line, Tumor , Cell Lineage , Cell Movement , Chromatin/chemistry , Endoglin , Epithelial Cells/cytology , Female , Genetic Vectors , Humans , Male , Neoplasm Invasiveness , Promoter Regions, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...