Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
ACS Med Chem Lett ; 14(2): 176-182, 2023 Feb 09.
Article in English | MEDLINE | ID: mdl-36793427

ABSTRACT

An enhanced ability to pre-engineer favorable drug-likeness qualities into bioactive molecules would focus and streamline the drug development process. We find that phenols, carboxylic acids, and a purine react with isosorbide ("GRAS" designated) under Mitsunobu coupling conditions to deliver the isoidide conjugates selectively and efficiently. Such conjugates show improved solubility and permeability properties compared with the bare scaffold compounds themselves, and the purine adduct may have applications as a 2'-deoxyadenosine isostere. We anticipate additional benefits, implied by their structures, in metabolic stability and reduced toxicity of the isoidide conjugates as well.

2.
Bioorg Med Chem Lett ; 24(18): 4450-4454, 2014 Sep 15.
Article in English | MEDLINE | ID: mdl-25155385

ABSTRACT

High throughput screening (HTS) of our chemical library identified 3-alkylamino-2-aryl-5H-imidazo[1,2,b]pyrazol-7-carbonitrile 1 as a potent antagonist of the LPA1 receptor (LPA1R). Further evaluation of this class of compounds indicated that LPA1R antagonist activity originated from the degradation of the parent molecule in DMSO during the assay conditions. Here, we describe the isolation and characterization of the degradation products and their LPA1R antagonist activity. We further profiled these novel non-carboxylic acid LPA1R antagonists and demonstrated their inhibition of LPA-induced proliferation and contraction of normal human lung fibroblasts (NHLF).


Subject(s)
Drug Discovery , Pyrazoles/pharmacology , Receptors, Lysophosphatidic Acid/antagonists & inhibitors , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Fibroblasts/drug effects , Fibroblasts/metabolism , Humans , Lung/cytology , Lysophospholipids/antagonists & inhibitors , Lysophospholipids/pharmacology , Molecular Structure , Pyrazoles/chemical synthesis , Pyrazoles/chemistry , Receptors, Lysophosphatidic Acid/metabolism , Structure-Activity Relationship
3.
Bioorg Med Chem Lett ; 23(4): 1036-40, 2013 Feb 15.
Article in English | MEDLINE | ID: mdl-23312471

ABSTRACT

From a series of N-acyl 4-(3-pyridonyl)phenylalanine derivatives of 4, the trifluoromethyl derivative 28 was identified as a potent, dual acting alpha4 integrin antagonist with activity in primate models of allergic asthma. Investigation of a series of prodrug esters led to the discovery of the morpholinopropyl derivative 48 that demonstrated good intestinal fluid stability, solubility and permeability. Compound 48 gave high blood levels of 28 when dosed orally in cynomolgus monkeys. Surprisingly, hydrolysis of 48 was rapid in liver microsomes from the pharmacological species, mouse, rat and monkey, but slow in dog and human; in vivo studies also indicated there was prolonged exposure to unchanged prodrug in dogs.


Subject(s)
Integrin alpha4beta1/antagonists & inhibitors , Integrins/antagonists & inhibitors , Phenylalanine/analogs & derivatives , Animals , Dogs , Esters/blood , Esters/pharmacology , Humans , Mice , Phenylalanine/pharmacology , Prodrugs/chemistry , Prodrugs/pharmacology , Rats
4.
Bioorg Med Chem Lett ; 23(4): 1026-31, 2013 Feb 15.
Article in English | MEDLINE | ID: mdl-23312474

ABSTRACT

N-Acyl 4-(5-pyrimidine-2,4-dionyl)phenylalanine derivatives of type 4 were designed to replace the 2,6-dichlorobenzoylamine portion of compound 1 in order to identify novel compounds with improved potency against α4-integrins. Several derivatives were identified as very potent dual-acting α4-integrin, α4ß1 and α4ß7 antagonists. Investigation of a limited number of prodrug esters led to the discovery of the ethyl ester prodrug 42, which demonstrated good intestinal fluid stability and good permeability. Despite low solubility, 42 gave acceptable blood levels of 30 when dosed orally in non-human primates. Additionally, 42 had an overall excellent profile and was selected for clinical trials. Investigation of N-acyl 4-(5-pyrimidine-2,4-dionyl)phenylalanine derivatives led to the discovery of several very potent dual-acting α4-integrin antagonists. Ethyl ester prodrug 42 advanced to human clinical trials based on the excellent intestinal fluid stability, good permeability and superior efficacy in non-human primates.


Subject(s)
Integrin alpha4beta1/antagonists & inhibitors , Integrins/antagonists & inhibitors , Phenylalanine/analogs & derivatives , Pyrimidines/pharmacology , Animals , Dogs , Esters/chemistry , Esters/pharmacokinetics , Esters/pharmacology , Humans , Macaca fascicularis , Mice , Phenylalanine/pharmacokinetics , Phenylalanine/pharmacology , Prodrugs/chemistry , Prodrugs/pharmacokinetics , Prodrugs/pharmacology , Pyrimidines/chemistry , Pyrimidines/pharmacokinetics , Rats , Structure-Activity Relationship
5.
J Med Chem ; 55(17): 7920-39, 2012 Sep 13.
Article in English | MEDLINE | ID: mdl-22894757

ABSTRACT

Lysophosphatidic acid is a class of bioactive phospholipid that mediates most of its biological effects through LPA receptors, of which six isoforms have been identified. The recent results from LPA1 knockout mice suggested that blocking LPA1 signaling could provide a potential novel approach for the treatment of idiopathic pulmonary fibrosis. Here, we report the design and synthesis of pyrazole- and triazole-derived carbamates as LPA1-selective and LPA1/3 dual antagonists. In particular, compound 2, the most selective LPA1 antagonist reported, inhibited proliferation and contraction of normal human lung fibroblasts (NHLF) following LPA stimulation. Oral dosing of compound 2 to mice resulted in a dose-dependent reduction of plasma histamine levels in a murine LPA challenge model. Furthermore, we applied our novel antagonists as chemistry probes and investigated the contribution of LPA1/2/3 in mediating the pro-fibrotic responses. Our results suggest LPA1 as the major receptor subtype mediating LPA-induced proliferation and contraction of NHLF.


Subject(s)
Drug Discovery , Lung/drug effects , Receptors, Lysophosphatidic Acid/antagonists & inhibitors , Administration, Oral , Animals , Fibroblasts/drug effects , Humans , Lung/cytology , Magnetic Resonance Spectroscopy , Mice , Pyrazoles/chemistry , Pyrazoles/pharmacology , Spectrometry, Mass, Electrospray Ionization , Structure-Activity Relationship
6.
Bioorg Med Chem Lett ; 20(19): 5673-6, 2010 Oct 01.
Article in English | MEDLINE | ID: mdl-20805029

ABSTRACT

The phenylacetamide 1 represents the archtypical glucokinase activator (GKA) in which only the R-isomer is active. In order to probe whether the chiral center could be replaced, we prepared a series of olefins 2 and show in the present work that these compounds represent a new class of GKAs. Surprisingly, the SAR of the new series paralleled that of the saturated derivatives with the exception that there was greater tolerance for larger alkyl and cycloalkyl groups at R(2) region in comparison to the phenylacetamides. In normal Wistar rats, the 2,3-disubstituted acrylamide analog 10 was well absorbed and demonstrated robust glucose lowering effects.


Subject(s)
Acrylamides/chemistry , Benzeneacetamides/chemistry , Glucokinase/chemistry , Hypoglycemic Agents/chemistry , Sulfones/chemistry , Acrylamides/chemical synthesis , Acrylamides/pharmacokinetics , Animals , Benzeneacetamides/chemical synthesis , Benzeneacetamides/pharmacokinetics , Glucokinase/metabolism , Hypoglycemic Agents/chemical synthesis , Hypoglycemic Agents/pharmacokinetics , Rats , Rats, Wistar , Structure-Activity Relationship , Sulfones/chemical synthesis , Sulfones/pharmacokinetics
7.
J Med Chem ; 53(9): 3502-16, 2010 May 13.
Article in English | MEDLINE | ID: mdl-20380377

ABSTRACT

The inhibition of LTB(4) binding to and activation of G-protein-coupled receptors BLT1 and BLT2 is the premise of a treatment for several inflammatory diseases. In a lead optimization effort starting with the leukotriene B(4) (LTB(4)) receptor antagonist (2), members of a series of 3,5-diarylphenyl ethers were found to be highly potent inhibitors of LTB(4) binding to BLT1 and BLT2 receptors, with varying levels of selectivity depending on the substitution. In addition, compounds 33 and 38 from this series have good in vitro ADME properties, good oral bioavailability, and efficacy after oral delivery in guinea pig LTB(4) and nonhuman primate allergen challenge models. Further profiling in a rat non-GLP toxicity experiment provided the rationale for differentiation and selection of one compound (33) for clinical development.


Subject(s)
Drug Discovery , Leukotriene Antagonists/chemistry , Phenyl Ethers/pharmacology , Receptors, Leukotriene B4/antagonists & inhibitors , Animals , Drug Evaluation, Preclinical , Guinea Pigs , HL-60 Cells , Humans , Leukotriene Antagonists/pharmacology , Phenyl Ethers/chemistry , Primates , Protein Binding , Rats , Receptors, G-Protein-Coupled/metabolism , Receptors, Leukotriene B4/metabolism , Structure-Activity Relationship
8.
Prostaglandins Other Lipid Mediat ; 92(1-4): 33-43, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20214997

ABSTRACT

Asthma, chronic obstructive pulmonary disease (COPD) and acute lung injury/acute respiratory distress syndrome (ALI/ARDS) are characterized by neutrophilic inflammation and elevated levels of leukotriene B4 (LTB4). However, the exact role of LTB4 pathways in mediating pulmonary neutrophilia and the potential therapeutic application of LTB4 receptor antagonists in these diseases remains controversial. Here we show that a novel dual BLT1 and BLT2 receptor antagonist, RO5101576, potently inhibited LTB4-evoked calcium mobilization in HL-60 cells and chemotaxis of human neutrophils. RO5101576 significantly attenuated LTB4-evoked pulmonary eosinophilia in guinea pigs. In non-human primates, RO5101576 inhibited allergen and ozone-evoked pulmonary neutrophilia, with comparable efficacy to budesonide (allergic responses). RO5101576 had no effects on LPS-evoked neutrophilia in guinea pigs and cigarette smoke-evoked neutrophilia in mice and rats. In toxicology studies RO5101576 was well-tolerated. Theses studies show differential effects of LTB4 receptor antagonism on neutrophil responses in vivo and suggest RO5101576 may represent a potential new treatment for pulmonary neutrophilia in asthma.


Subject(s)
Benzodioxoles/pharmacology , Phenylpropionates/pharmacology , Pneumonia/drug therapy , Primates , Receptors, Leukotriene B4/antagonists & inhibitors , Animals , Benzodioxoles/therapeutic use , Benzodioxoles/toxicity , Dogs , Drug-Related Side Effects and Adverse Reactions , Female , Guinea Pigs , HL-60 Cells , Humans , Hypersensitivity/complications , Lipopolysaccharides/pharmacology , Lung/drug effects , Male , Mice , Ozone/pharmacology , Phenylpropionates/therapeutic use , Phenylpropionates/toxicity , Pneumonia/chemically induced , Pneumonia/complications , Pneumonia/metabolism , Rats , Receptors, Leukotriene B4/metabolism , Smoking/adverse effects , Toxicity Tests
9.
Bioorg Med Chem Lett ; 17(8): 2134-8, 2007 Apr 15.
Article in English | MEDLINE | ID: mdl-17303421

ABSTRACT

A novel series of quinolinyl-methylene-thiazolinones has been identified as potent and selective cyclin-dependent kinase 1 (CDK1) inhibitors. Their synthesis and structure activity relationships (SAR) are described. Representative compounds from this class reversibly inhibit CDK1 activity in vitro, and block cell cycle progression in human tumor cell lines, suggesting a potential use as antitumor agents.


Subject(s)
CDC2 Protein Kinase/antagonists & inhibitors , Thiazoles/chemical synthesis , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Drug Screening Assays, Antitumor , Humans , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/pharmacology , Structure-Activity Relationship , Thiazoles/pharmacology
10.
Curr Top Med Chem ; 4(14): 1509-23, 2004.
Article in English | MEDLINE | ID: mdl-15544541

ABSTRACT

Starting with a cyclic peptide of moderate potency as a VLA-4 antagonist, highly potent and conformationally defined cyclic peptides were developed incorporating a constrained tyrosine and an achiral Asp-Pro spacer. N-Acyl phenylalanine derivatives were also discovered to have VLA-4 antagonist activity. During the course of development of this series, we found that the active acylphenylalanines mimic the pharmacophores present in the cyclic peptides and hypothesized that they bind to the same site on VLA-4. This insight guided our optimization strategy. Based on the emerging SAR, as well as insights from the recent X-ray crystal structure of the integrin alphavbeta3 bound to a RGD containing cyclic peptide, we propose a binding model for these compounds.


Subject(s)
Integrin alpha4beta1/antagonists & inhibitors , Humans , Inhibitory Concentration 50 , Molecular Mimicry , Peptides, Cyclic/chemistry , Peptides, Cyclic/pharmacology , Structure-Activity Relationship
11.
Bioorg Med Chem Lett ; 12(17): 2475-8, 2002 Sep 02.
Article in English | MEDLINE | ID: mdl-12161161

ABSTRACT

A systematic structure-activity relationship investigation of the lead compound 1 resulted the identification of several N-[(substituted alkyl)cycloalkanoyl]-4-[((2,6-dichlorophenyl)carbonyl)amino]-L-phenylalanine derivatives as potent VCAM/VLA-4 antagonists. The data are consistent with a model of these compounds in which these alkanoylphenylalanines reside in a compact gauche (-) bioactive conformation.


Subject(s)
Integrin alpha4beta1/antagonists & inhibitors , Phenylalanine/analogs & derivatives , Vascular Cell Adhesion Molecule-1/drug effects , Crystallography, X-Ray , Cycloparaffins/chemical synthesis , Cycloparaffins/pharmacology , Humans , Inhibitory Concentration 50 , Molecular Structure , Phenylalanine/pharmacology , Protein Binding , Structure-Activity Relationship
12.
Bioorg Med Chem Lett ; 12(17): 2479-82, 2002 Sep 02.
Article in English | MEDLINE | ID: mdl-12161162

ABSTRACT

A series of N-benzoyl-4-[(2,6-dichlorobenzoyl)amino]-L-phenylalanine derivatives was prepared in order to optimize the substitution on the N-benzoyl moiety for VCAM/VLA-4 antagonist activity. Disubstitution in the 2- and 6-positions is favored and a range of small alkyl and halogen are tolerated. A model of the bioactive conformation of these compounds is proposed.


Subject(s)
Integrin alpha4beta1/antagonists & inhibitors , Phenylalanine/analogs & derivatives , Vascular Cell Adhesion Molecule-1/drug effects , Heterocyclic Compounds/chemistry , Humans , Hydrocarbons, Aromatic , Inhibitory Concentration 50 , Models, Molecular , Molecular Mimicry , Phenylalanine/pharmacology , Protein Binding , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...