Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 14(1): 3579, 2023 06 22.
Article in English | MEDLINE | ID: mdl-37349313

ABSTRACT

Musculoskeletal chronic pain is prevalent in individuals with Alzheimer's disease (AD); however, it remains largely untreated in these patients, raising the possibility that pain mechanisms are perturbed. Here, we utilise the TASTPM transgenic mouse model of AD with the K/BxN serum transfer model of inflammatory arthritis. We show that in male and female WT mice, inflammatory allodynia is associated with a distinct spinal cord microglial response characterised by TLR4-driven transcriptional profile and upregulation of P2Y12. Dorsal horn nociceptive afferent terminals release the TLR4 ligand galectin-3 (Gal-3), and intrathecal injection of a Gal-3 inhibitor attenuates allodynia. In contrast, TASTPM mice show reduced inflammatory allodynia, which is not affected by the Gal-3 inhibitor and correlates with the emergence of a P2Y12- TLR4- microglia subset in the dorsal horn. We suggest that sensory neuron-derived Gal-3 promotes allodynia through the TLR4-regulated release of pro-nociceptive mediators by microglia, a process that is defective in TASTPM due to the absence of TLR4 in a microglia subset.


Subject(s)
Alzheimer Disease , Chronic Pain , Mice , Male , Female , Animals , Hyperalgesia/genetics , Microglia , Alzheimer Disease/genetics , Galectin 3/genetics , Nociception , Toll-Like Receptor 4/genetics , Spinal Cord , Spinal Cord Dorsal Horn , Mice, Transgenic , Chronic Pain/genetics , Disease Models, Animal
2.
J Clin Invest ; 133(11)2023 06 01.
Article in English | MEDLINE | ID: mdl-37071481

ABSTRACT

Neuropathic pain remains poorly managed by current therapies, highlighting the need to improve our knowledge of chronic pain mechanisms. In neuropathic pain models, dorsal root ganglia (DRG) nociceptive neurons transfer miR-21 packaged in extracellular vesicles to macrophages that promote a proinflammatory phenotype and contribute to allodynia. Here we show that miR-21 conditional deletion in DRG neurons was coupled with lack of upregulation of chemokine CCL2 after nerve injury and reduced accumulation of CCR2-expressing macrophages, which showed TGF-ß-related pathway activation and acquired an M2-like antinociceptive phenotype. Indeed, neuropathic allodynia was attenuated after conditional knockout of miR-21 and restored by TGF-ßR inhibitor (SB431542) administration. Since TGF-ßR2 and TGF-ß1 are known miR-21 targets, we suggest that miR-21 transfer from injured neurons to macrophages maintains a proinflammatory phenotype via suppression of such an antiinflammatory pathway. These data support miR-21 inhibition as a possible approach to maintain polarization of DRG macrophages at an M2-like state and attenuate neuropathic pain.


Subject(s)
MicroRNAs , Neuralgia , Humans , Hyperalgesia/genetics , Hyperalgesia/metabolism , Transforming Growth Factor beta/metabolism , Macrophages/metabolism , Neuralgia/genetics , Neuralgia/therapy , Neuralgia/metabolism , Sensory Receptor Cells/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Ganglia, Spinal/metabolism
3.
Brain Behav Immun Health ; 26: 100548, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36388139

ABSTRACT

Chronic pain is undertreated in people with Alzheimer's disease (AD) and better understanding of the underlying mechanisms of chronic pain in this neurodegenerative disease is essential. Neuropathic pain and AD share a significant involvement of the peripheral immune system. Therefore, we examined the development of nerve injury-induced allodynia in TASTPM (APPsweXPS1.M146V) mice and assessed monocytes/macrophages at injury site. TASTPM developed partial allodynia compared to WT at days 7, 14 and 21 days after injury, and showed complete allodynia only after treatment with naloxone methiodide, a peripheralized opioid receptor antagonist. Since macrophages are one of the sources of endogenous opioids in the periphery, we examined macrophage infiltration at injury site and observed that CD206+/MHCII- cells were more numerous in TASTPM than WT. Accordingly, circulating TASTPM Ly6Chigh (classical) monocytes, which are pro-inflammatory and infiltrate at the site of injury, were less abundant than in WT. In in vitro experiments, TASTPM bone marrow-derived macrophages showed efficient phagocytosis of myelin extracts containing amyloid precursor protein, acquired CD206+/MHCII- phenotype, upregulated mRNA expression of proenkephalin (PENK) and accumulated enkephalins in culture media. These data suggest that in TASTPM nerve-injured mice, infiltrating macrophages which derive from circulating monocytes and may contain amyloid fragments, acquire M2-like phenotype after myelin engulfment, and release enkephalins which are likely to inhibit nociceptive neuron activity via activation of opioid receptors.

4.
Brain Behav Immun ; 106: 289-306, 2022 11.
Article in English | MEDLINE | ID: mdl-36115544

ABSTRACT

Pain is a persistent symptom of Rheumatoid Arthritis, and the K/BxN serum transfer model recapitulates both association and dissociation between pain and joint inflammation in RA. Furthermore, this model features monocyte/macrophage infiltration in joints and lumbar dorsal root ganglia (DRG), where these immune cells are close to nociceptive neurons. We focussed on CX3CR1-monocyte/macrophage trafficking and show that at peak paw swelling associated with nociception, CX3CR1 deletion altered neither swelling nor macrophage infiltration/phenotype in paws. However, acute nociception and DRG non-classical monocyte numbers were reduced in CX3CR1GFP/GFP (KO) compared to CX3CR1+/GFP (WT). Nociception that persisted despite swelling had resolved was attenuated in KO and correlated with DRG macrophages displaying M2-like phenotype. Still in the DRG, neurons up-regulated neuropeptide CGRP and olcegepant treatment reduced acute swelling, nociception, and leukocyte infiltration in paws and DRG. We delineate in-vitro a signalling pathway showing that CGRP liberates the CX3CR1 ligand fractalkine (FKN) from endothelium, and in bone marrow-derived macrophages, FKN promotes activation of intracellular kinases, polarisation towards M1-like phenotype and release of pro-nociceptive IL-6. These data implicate non-classical CX3CR1-expressing monocyte and macrophage recruitment into the DRG in initiation and maintenance of arthritis pain.


Subject(s)
Arthritis, Rheumatoid , Chemokine CX3CL1 , CX3C Chemokine Receptor 1/metabolism , Calcitonin Gene-Related Peptide/metabolism , Chemokine CX3CL1/metabolism , Ganglia, Spinal/metabolism , Humans , Interleukin-6/metabolism , Ligands , Macrophages/metabolism , Monocytes/metabolism , Pain/metabolism
5.
Science ; 376(6588): 33-34, 2022 04.
Article in English | MEDLINE | ID: mdl-35357920

ABSTRACT

An emergent subgroup of spinal cord microglia mediates recovery from persistent pain.


Subject(s)
Microglia , Pain , Humans , Spinal Cord
6.
Brain Behav Immun ; 96: 279-289, 2021 08.
Article in English | MEDLINE | ID: mdl-34139287

ABSTRACT

In this review, we report existing preclinical evidence on how the CNS compartment as well as sex affect microglia functions in health. We highlight that recent advances in transcriptomics analyses have led to thorough characterization of disease-associated microglial states in mice and humans. We then consider the specific scenario of peripheral nerve or tissue injury which induce expression of a specific subset of genes in microglia in the dorsal horn of the spinal cord. We suggest the intriguing possibility that future studies may disclose the existence of a unique microglia transcriptional profile that is associated with chronic pain conditions. We also collect evidence that microglial activation in pain-related areas of the brain can be observed in models of neuropathic pain in agreement with recent neuroimaging studies in chronic pain patients. Based on the evidence discussed here, we predict that future studies on the neuroimmune interactions in chronic pain should complement our current understanding of microglia functions, but also adventure in using novel approaches such as scRNA-seq, spatial transcriptomics, CYTOF and transmission electron microscopy to provide a more complete characterization of the function, transcriptome and structure of microglia in chronic pain.


Subject(s)
Chronic Pain , Neuralgia , Animals , Chronic Pain/genetics , Humans , Mice , Microglia , Peripheral Nerves , Spinal Cord , Spinal Cord Dorsal Horn
SELECTION OF CITATIONS
SEARCH DETAIL
...