Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Microorganisms ; 12(4)2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38674695

ABSTRACT

Antimicrobial-resistant Klebsiella pneumoniae is one of the predominant pathogens in healthcare settings. However, the prevalence and resistome of this organism within residential aged care facilities (RACFs), which are potential hotspots for antimicrobial resistance, remain unexplored. Here, we provide a phenotypic and molecular characterization of antimicrobial-resistant K. pneumoniae isolated from RACFs. K. pneumoniae was isolated from urine, faecal and wastewater samples and facility swabs. The antimicrobial susceptibility profiles of all the isolates were determined and the genomic basis for resistance was explored with whole-genome sequencing on a subset of isolates. A total of 147 K. pneumoniae were isolated, displaying resistance against multiple antimicrobials. Genotypic analysis revealed the presence of beta-lactamases and the ciprofloxacin-resistance determinant QnrB4 but failed to confirm the basis for the observed cephalosporin resistance. Clonal spread of the multidrug-resistant, widely disseminated sequence types 323 and 661 was observed. This study was the first to examine the resistome of K. pneumoniae isolates from RACFs and demonstrated a complexity between genotypic and phenotypic antimicrobial resistance. The intra-facility dissemination and persistence of multidrug-resistant clones is concerning, given that residents are particularly vulnerable to antimicrobial resistant infections, and it highlights the need for continued surveillance and interventions to reduce the risk of outbreaks.

2.
Microbiologyopen ; 13(3): e1409, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38682784

ABSTRACT

Stenotrophomonas maltophilia is a multidrug-resistant (MDR), Gram-negative bacterium intrinsically resistant to beta-lactams, including last-resort carbapenems. As an opportunistic pathogen, it can cause serious healthcare-related infections. This study assesses the prevalence, resistance profiles, and genetic diversity of S. maltophilia isolated from residential aged care facilities (RACFs). RACFs are known for their overuse and often inappropriate use of antibiotics, creating a strong selective environment that favors the development of bacterial resistance. The study was conducted on 73 S. maltophilia isolates recovered from wastewater and facility swab samples obtained from three RACFs and a retirement village. Phenotypic and genotypic assessments of the isolates revealed high carbapenem resistance, exemplifying their intrinsic beta-lactam resistance. Alarmingly, 49.3% (36/73) of the isolates were non-wild type for colistin, with minimum inhibitory concentration values of > 4 mg/L, and 11.0% (8/73) were resistant to trimethoprim-sulfamethoxazole. No resistance mechanisms were detected for either antimicrobial. Genotypic assessment of known lineages revealed isolates clustering with Sm17 and Sm18, lineages not previously reported in Australia, suggesting the potential ongoing spread of MDR S. maltophilia. Lastly, although only a few isolates were biocide tolerant (2.7%, 2/73), their ability to grow in high concentrations (64 mg/L) of triclosan is concerning, as it may be selecting for their survival and continued dissemination.


Subject(s)
Anti-Bacterial Agents , Drug Resistance, Multiple, Bacterial , Gram-Negative Bacterial Infections , Microbial Sensitivity Tests , Stenotrophomonas maltophilia , Stenotrophomonas maltophilia/drug effects , Stenotrophomonas maltophilia/genetics , Stenotrophomonas maltophilia/isolation & purification , Stenotrophomonas maltophilia/classification , Drug Resistance, Multiple, Bacterial/genetics , Humans , Anti-Bacterial Agents/pharmacology , Gram-Negative Bacterial Infections/microbiology , Gram-Negative Bacterial Infections/epidemiology , Genotype , Australia , Wastewater/microbiology , Prevalence , Genetic Variation , Colistin/pharmacology , Carbapenems/pharmacology , Aged , Residential Facilities
3.
Microbiol Spectr ; 11(6): e0073123, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-37787536

ABSTRACT

IMPORTANCE: Antimicrobial resistance (AMR) is a global threat that imposes a heavy burden on our health and economy. Residential aged care facilities (RACFs), where frequent inappropriate antibiotic use creates a selective environment that promotes the development of bacterial resistance, significantly contribute to this problem. We used wastewater-based epidemiology to provide a holistic whole-facility assessment and comparison of antimicrobial resistance in two RACFs and a retirement village. Resistant Escherichia coli, a common and oftentimes problematic pathogen within RACFs, was isolated from the wastewater, and the phenotypic and genotypic AMR was determined for all isolates. We observed a high prevalence of an international high-risk clone, carrying an extended-spectrum beta-lactamase in one facility. Analysis of the entire resistome also revealed a greater number of mobile resistance genes in this facility. Finally, both facilities displayed high fluoroquinolone resistance rates-a worrying trend seen globally despite measures in place aimed at limiting their use.


Subject(s)
Escherichia coli Infections , Escherichia coli , Humans , Aged , Anti-Bacterial Agents/pharmacology , Escherichia coli Infections/epidemiology , Escherichia coli Infections/microbiology , Wastewater , Drug Resistance, Bacterial , Drug Resistance, Multiple, Bacterial/genetics , beta-Lactamases/genetics , Microbial Sensitivity Tests
SELECTION OF CITATIONS
SEARCH DETAIL
...