Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cancer Chemother Pharmacol ; 80(4): 861-867, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28756516

ABSTRACT

Malignant pleural mesotheliomas (MPM) are most often surgically unresectable, and they respond poorly to current chemotherapy and radiation therapy. Between 23 and 64% of malignant pleural mesothelioma have somatic inactivating mutations in the BAP1 gene. BAP1 is a homologous recombination (HR) DNA repair component found in the BRCA1/BARD1 complex. Similar to BRCA1/2 deficient cancers, mutation in the BAP1 gene leads to a deficient HR pathway and increases the reliance on other DNA repair pathways. We hypothesized that BAP1-mutant MPM would require PARP1 for survival, similar to the BRCA1/2 mutant breast and ovarian cancers. Therefore, we used the clinical PARP1 inhibitors niraparib and olaparib to assess whether they could induce synthetic lethality in MPM. Surprisingly, we found that all MPM cell lines examined, regardless of BAP1 status, were addicted to PARP1-mediated DNA repair for survival. We found that niraparib and olaparib exposure markedly decreased clonal survival in multiple MPM cell lines, with and without BAP1 mutations. This clonal cell death may be due to the extensive replication fork collapse and genomic instability that PARP1 inhibition induces in MPM cells. The requirement of MPM cells for PARP1 suggests that they may generally arise from defects in HR DNA repair. More importantly, these data demonstrate that the PARP1 inhibitors could be effective in the treatment of MPM, for which little effective therapy exists.


Subject(s)
Lung Neoplasms/drug therapy , Mesothelioma/drug therapy , Pleural Neoplasms/drug therapy , Poly (ADP-Ribose) Polymerase-1/antagonists & inhibitors , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Tumor Suppressor Proteins/genetics , Ubiquitin Thiolesterase/genetics , Cell Line, Tumor , Clone Cells/cytology , DNA Repair/genetics , Humans , Indazoles/pharmacology , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Mesothelioma/genetics , Mesothelioma/pathology , Mesothelioma, Malignant , Mutation , Phthalazines/pharmacology , Piperazines/pharmacology , Piperidines/pharmacology , Pleural Neoplasms/genetics , Pleural Neoplasms/pathology , Synthetic Lethal Mutations
2.
J Biol Chem ; 292(7): 2795-2804, 2017 02 17.
Article in English | MEDLINE | ID: mdl-28049724

ABSTRACT

Replication is not as continuous as once thought, with DNA damage frequently stalling replication forks. Aberrant repair of stressed replication forks can result in cell death or genome instability and resulting transformation to malignancy. Stressed replication forks are most commonly repaired via homologous recombination (HR), which begins with 5' end resection, mediated by exonuclease complexes, one of which contains Exo1. However, Exo1 requires free 5'-DNA ends upon which to act, and these are not commonly present in non-reversed stalled replication forks. To generate a free 5' end, stalled replication forks must therefore be cleaved. Although several candidate endonucleases have been implicated in cleavage of stalled replication forks to permit end resection, the identity of such an endonuclease remains elusive. Here we show that the 5'-endonuclease EEPD1 cleaves replication forks at the junction between the lagging parental strand and the unreplicated DNA parental double strands. This cleavage creates the structure that Exo1 requires for 5' end resection and HR initiation. We observed that EEPD1 and Exo1 interact constitutively, and Exo1 repairs stalled replication forks poorly without EEPD1. Thus, EEPD1 performs a gatekeeper function for replication fork repair by mediating the fork cleavage that permits initiation of HR-mediated repair and restart of stressed forks.


Subject(s)
DNA Repair , DNA Replication , Endodeoxyribonucleases/metabolism , HEK293 Cells , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...