Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nucleic Acids Res ; 51(18): 9567-9575, 2023 Oct 13.
Article in English | MEDLINE | ID: mdl-37670532

ABSTRACT

Molecular structures are often fitted into cryo-EM maps by flexible fitting. When this requires large conformational changes, identifying rigid bodies can help optimize the model-map fit. Tools for identifying rigid bodies in protein structures exist, however an equivalent for nucleic acid structures is lacking. With the increase in cryo-EM maps containing RNA and progress in RNA structure prediction, there is a need for such tools. We previously developed RIBFIND, a program for clustering protein secondary structures into rigid bodies. In RIBFIND2, this approach is extended to nucleic acid structures. RIBFIND2 can identify biologically relevant rigid bodies in important groups of complex RNA structures, capturing a wide range of dynamics, including large rigid-body movements. The usefulness of RIBFIND2-assigned rigid bodies in cryo-EM model refinement was demonstrated on three examples, with two conformations each: Group II Intron complexed IEP, Internal Ribosome Entry Site and the Processome, using cryo-EM maps at 2.7-5 Å resolution. A hierarchical refinement approach, performed on progressively smaller sets of RIBFIND2 rigid bodies, was clearly shown to have an advantage over classical all-atom refinement. RIBFIND2 is available via a web server with structure visualization and as a standalone tool.


Subject(s)
RNA , Software , Models, Molecular , Protein Conformation , Proteins/chemistry , RNA/chemistry , Nucleic Acid Conformation
3.
Nat Commun ; 13(1): 4243, 2022 07 22.
Article in English | MEDLINE | ID: mdl-35869078

ABSTRACT

Co-translational folding is a fundamental process for the efficient biosynthesis of nascent polypeptides that emerge through the ribosome exit tunnel. To understand how this process is modulated by the shape and surface of the narrow tunnel, we have rationally engineered three exit tunnel protein loops (uL22, uL23 and uL24) of the 70S ribosome by CRISPR/Cas9 gene editing, and studied the co-translational folding of an immunoglobulin-like filamin domain (FLN5). Our thermodynamics measurements employing 19F/15N/methyl-TROSY NMR spectroscopy together with cryo-EM and molecular dynamics simulations reveal how the variations in the lengths of the loops present across species exert their distinct effects on the free energy of FLN5 folding. A concerted interplay of the uL23 and uL24 loops is sufficient to alter co-translational folding energetics, which we highlight by the opposite folding outcomes resulting from their extensions. These subtle modulations occur through a combination of the steric effects relating to the shape of the tunnel, the dynamic interactions between the ribosome surface and the unfolded nascent chain, and its altered exit pathway within the vestibule. These results illustrate the role of the exit tunnel structure in co-translational folding, and provide principles for how to remodel it to elicit a desired folding outcome.


Subject(s)
Protein Folding , Ribosomes , Molecular Dynamics Simulation , Protein Biosynthesis , Proteins/metabolism , Ribosomes/metabolism , Thermodynamics
4.
Nucleic Acids Res ; 49(6): 3242-3262, 2021 04 06.
Article in English | MEDLINE | ID: mdl-33660774

ABSTRACT

The African trypanosome Trypanosoma brucei is a unicellular eukaryote, which relies on a protective variant surface glycoprotein (VSG) coat for survival in the mammalian host. A single trypanosome has >2000 VSG genes and pseudogenes of which only one is expressed from one of ∼15 telomeric bloodstream form expression sites (BESs). Infectious metacyclic trypanosomes present within the tsetse fly vector also express VSG from a separate set of telomeric metacyclic ESs (MESs). All MESs are silenced in bloodstream form T. brucei. As very little is known about how this is mediated, we performed a whole genome RNAi library screen to identify MES repressors. This allowed us to identify a novel SAP domain containing DNA binding protein which we called TbSAP. TbSAP is enriched at the nuclear periphery and binds both MESs and BESs. Knockdown of TbSAP in bloodstream form trypanosomes did not result in cells becoming more 'metacyclic-like'. Instead, there was extensive global upregulation of transcripts including MES VSGs, VSGs within the silent VSG arrays as well as genes immediately downstream of BES promoters. TbSAP therefore appears to be a novel chromatin protein playing an important role in silencing the extensive VSG repertoire of bloodstream form T. brucei.


Subject(s)
Protozoan Proteins/metabolism , Repressor Proteins/metabolism , Trypanosoma brucei brucei/genetics , Variant Surface Glycoproteins, Trypanosoma/genetics , Chromatin/metabolism , Gene Expression Regulation , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Promoter Regions, Genetic , Protozoan Proteins/genetics , RNA Interference , Repressor Proteins/genetics , Trypanosoma brucei brucei/growth & development , Trypanosoma brucei brucei/metabolism , Variant Surface Glycoproteins, Trypanosoma/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...