Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
ACS Comb Sci ; 19(10): 646-656, 2017 10 09.
Article in English | MEDLINE | ID: mdl-28825467

ABSTRACT

We describe the parallel synthesis of novel analogs of GW0742, a peroxisome proliferator-activated receptor δ (PPARδ) agonist. For that purpose, modified reaction conditions were applied, such as a solid-phase palladium-catalyzed Suzuki coupling. In addition, tetrazole-based compounds were generated as a bioisostere for carboxylic acid-containing ligand GW0742. The new compounds were investigated for their ability to activate PPARδ mediated transcription and their cross-reactivity with the vitamin D receptor (VDR), another member of the nuclear receptor superfamily. We identified many potent PPARδ agonists that were less toxic than GW0742, where ∼65 of the compounds synthesized exhibited partial PPARδ activity (23-98%) with EC50 values ranging from 0.007-18.2 µM. Some ligands, such as compound 32, were more potent inhibitors of VDR-mediated transcription with significantly reduced PPARδ activity than GW0742, however, none of the ligands were completely selective for VDR inhibition over PPARδ activation of transcription.


Subject(s)
PPAR delta/chemistry , Receptors, Calcitriol/antagonists & inhibitors , Tetrazoles/chemistry , Thiazoles/chemistry , Cell Survival/drug effects , Drug Design , HEK293 Cells , High-Throughput Screening Assays , Humans , Ligands , Molecular Docking Simulation , PPAR delta/agonists , PPAR delta/genetics , Receptors, Calcitriol/chemistry , Receptors, Calcitriol/metabolism , Small Molecule Libraries , Structure-Activity Relationship , Tetrazoles/chemical synthesis , Thiazoles/chemical synthesis , Transcription, Genetic
2.
Addict Biol ; 22(2): 381-389, 2017 Mar.
Article in English | MEDLINE | ID: mdl-26691867

ABSTRACT

Previous studies have identified an association between the gene glyoxalase 1 (Glo1) and anxiety-like behavior in mice and have shown that the substrate of GLO1, methylglyoxal, is a competitive partial agonist at GABAA receptors. Given the well-established role of GABAA receptors in the behavioral effects of ethanol (EtOH), we investigated the role of Glo1 in voluntary EtOH consumption in mice using the drinking in the dark (DID) paradigm. Transgenic mice overexpressing Glo1 on both FVB/NJ (FVB) or C57BL/6J (B6) backgrounds showed increased voluntary EtOH consumption compared to their wild-type littermates in DID. Furthermore, transgenic Glo1 knockdown mice on a B6 background showed decreased voluntary EtOH consumption in DID. These genetic manipulations of Glo1 had no effect on sucrose, saccharin or water consumption. Finally, we found that a small molecule GLO1 inhibitor (S-bromobenzylglutathione cyclopentyl diester (pBBG; 6.25, 12.5 mg/kg)) reduced EtOH consumption compared to vehicle treated B6 mice without altering saccharin or water consumption. Sucrose consumption was only reduced by the higher (12.5 mg/kg) dose of pBBG. We did not observe differences in the loss of righting reflex (LORR) or EtOH-induced foot slips on the balance beam in response to acute EtOH administration (LORR: 4 g/kg, Balance Beam: 1.25 g/kg) in B6 or FVB mice overexpressing Glo1, nor in B6 mice treated with pBBG. These data are the first to implicate Glo1 in EtOH-related behaviors and suggest that GLO1 inhibitors may have therapeutic potential for the treatment of alcohol use disorders.


Subject(s)
Alcohol Drinking/genetics , Central Nervous System Depressants/administration & dosage , Ethanol/administration & dosage , Lactoylglutathione Lyase/genetics , Animals , Behavior, Animal/drug effects , Female , Gene Knockdown Techniques , Lactoylglutathione Lyase/antagonists & inhibitors , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Pyruvaldehyde/metabolism , Receptors, GABA-A/metabolism , Reflex, Righting/drug effects , Saccharin/administration & dosage , Self Administration , Sucrose/administration & dosage , Sweetening Agents/administration & dosage , Water/administration & dosage
3.
Anticancer Res ; 35(11): 6001-7, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26504023

ABSTRACT

AIM: To investigate the in vivo effects of 3-indolylmethanamines 31B and PS121912 in treating ovarian cancer and leukemia, respectively. MATERIALS AND METHODS: Terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) and western blotting were applied to demonstrate the induction of apoptosis. Xenografted mice were investigated to show the antitumor effects of 3-indolylmethanamines. (13)C-Nuclear magnetic resource (NMR) and western blotting were used to demonstrate inhibition of glucose metabolism. RESULTS: 31B inhibited ovarian cancer cell proliferation and activated caspase-3, cleaved poly (ADP-ribose) polymerase 1 (PARP1), and phosphorylated mitogen-activated protein kinases (MAPK), JUN N-terminal kinase/stress-activated protein kinase (JNK/SAPK) and p38. 31B reduced ovarian cancer xenograft tumor growth and PS121912 inhibited the growth of HL-60-derived xenografts without any sign of toxicity. Compound 31B inhibited de novo glycolysis and lipogenesis mediated by the reduction of fatty acid synthase and lactate dehydrogenase-A expression. CONCLUSION: 3-Indolylmethanamines represent a new class of antitumor agents. We have shown for the first time the in vivo anticancer effects of 3-indolylmethanamines 31B and PS121912.


Subject(s)
Amines/chemistry , Aniline Compounds/pharmacology , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Hydrocarbons, Aromatic/pharmacology , Indoles/chemistry , Ovarian Neoplasms/drug therapy , Animals , Blotting, Western , Cell Proliferation/drug effects , Female , Flow Cytometry , Humans , Indoles/pharmacology , Magnetic Resonance Spectroscopy , Mice , Mice, Nude , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/pathology , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
4.
PLoS One ; 10(3): e0116409, 2015.
Article in English | MEDLINE | ID: mdl-25790236

ABSTRACT

Inflammatory responses by kidney mesangial cells play a critical role in the glomerulonephritis. The anti-inflammatory potential of nineteen mono-, di- and polyhydroxylated flavones including fisetin, quercetin, morin, tricetin, gossypetin, apigenin and myricetin were investigated on rat mesangial cells with lipopolysaccharide (LPS) as the inflammatory stimuli. 6-Hydroxyflavone and 4',6-dihydroxyflavone exhibited high activity with IC50 in the range of 2.0 µM, a much better inhibition potential in comparison to the well-studied polyhydroxylated flavones. Interestingly, the anti-inflammatory activity was not due to direct quenching of NO radicals. Investigation on derivatives with methylation, acetylation or sulfation of 6-hydroxyl group revealed that 6-methoxyflavone was the most potent with an IC50 of 192 nM. Mechanistic study indicated that the anti-inflammatory activity of 6-methoxyflavone arose via the inhibition of LPS-induced downstream inducible NO synthase in mesangial cells. The identification of 6-hydroxyflavone and 6-methoxyflavone with potent anti-inflammatory activity in kidney mesangial cells provides a new flavone scaffold and direction to develop naturally derived products for potential nephritis prevention and treatment.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Flavones/pharmacology , Flavonoids/pharmacology , Mesangial Cells/drug effects , Animals , Lipopolysaccharides/antagonists & inhibitors , Nitric Oxide Synthase/antagonists & inhibitors , Rats
5.
Article in English | MEDLINE | ID: mdl-25485183

ABSTRACT

Herein we describe the evaluation of GW0742 analogs in respect to their ability to modulate transcription mediated by the vitamin D receptor (VDR) and the peroxisome proliferator activated receptor (PPAR) δ. The GW0742 analog bearing a carboxylic ester functionality in place of the carboxylic acid was partially activating both nuclear receptors at low concentration and inhibited transcription at higher compound concentrations. The GW0742 alcohol derivative was more active than the ester in respect to VDR but less active in regard to PPARδ. Importantly, the alcohol derivative was significantly more toxic than the corresponding acid and ester.

6.
Bioorg Med Chem Lett ; 24(24): 5716-5720, 2014 Dec 15.
Article in English | MEDLINE | ID: mdl-25453807

ABSTRACT

Allosteric inhibition of coagulation enzymes offers the advantage of controlled inhibition. In this study, a small library of mono sulfated indole and benzothiazole based molecules was synthesized and screened against the panel of coagulation proteases. The results reveal that selected molecules inhibit the thrombin, factor Xa and factor XIa with moderate potency. Compound 6a was found to have an allosteric mode of inhibition against thrombin. Plasma clotting assays suggest that selected inhibitors 14b, 14c and 14d prolong both prothrombin and activated partial thromboplastin time. Overall, this work presents the newer class of allosteric inhibitors of thrombin and factor XIa with improved aqueous solubility profile.


Subject(s)
Anticoagulants/chemical synthesis , Benzothiazoles/chemistry , Blood Coagulation/drug effects , Factor XIa/antagonists & inhibitors , Factor Xa/chemistry , Thrombin/antagonists & inhibitors , Allosteric Regulation , Anticoagulants/pharmacology , Drug Design , Humans , Hydrophobic and Hydrophilic Interactions , Inhibitory Concentration 50 , Kinetics , Models, Molecular , Molecular Structure , Partial Thromboplastin Time , Prothrombin Time , Structure-Activity Relationship
7.
Article in English | MEDLINE | ID: mdl-25419525

ABSTRACT

Herein, we described the development of two virtual screens to identify new vitamin D receptor (VDR) antagonists among nuclear receptor (NR) ligands. Therefore, a database of 14330 nuclear receptor ligands and their NR affinities was assembled using the online available "Binding Database". Two different virtual screens were carried out in conjunction with a reported VDR crystal structure applying a stringent and less stringent pharmacophore model to filter docked NR ligand conformations. The pharmacophore models were based on the spatial orientation of the hydroxyl functionalities of VDR's natural ligands 1,25(OH2)D3 and 25(OH2)D3. The first virtual screen identified 32 NR ligands with a calculate free energy of VDR binding of more than -6.0 kJ/mol. All but nordihydroguaiaretic acid (NDGA) are VDR ligands, which inhibited the interaction between VDR and coactivator peptide SRC2-3 with an IC50 value of 15.8 µM. The second screen identified 162 NR ligands with a calculate free energy of VDR binding of more than -6.0 kJ/mol. More than half of these ligands were developed to bind VDR followed by ERα/ß ligands (26%), TRα/ß ligands (7%) and LxRα/ß ligands (7%). The binding between VDR and ERα ligand H6036 as well as TRα/ß ligand triiodothyronine and a homoserine analog thereof was confirmed by fluorescence polarization.

8.
Cancer Chemother Pharmacol ; 74(4): 787-98, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25107568

ABSTRACT

PURPOSE: PS121912 has been developed as selective vitamin D receptor (VDR)-coregulator inhibitor starting from a high throughput screening campaign to identify new agents that modulate VDR without causing hypercalcemia. Initial antiproliferative effects of PS121912 were observed that are characterized herein to enable future in vivo investigation with this molecule. METHODS: Antiproliferation and apoptosis were determined using four different cancer cell lines (DU145, Caco2, HL-60 and SKOV3) in the presence of PS121912, 1,25-(OH)2D3, or a combination of 1,25-(OH)2D3 and PS121912. VDR si-RNA was used to identify the role of VDR during this process. The application of ChIP enabled us to determine the involvement of coregulator recruitment during transcription, which was investigated by RT-PCR with VDR target genes and those affiliated with cell cycle progression. Translational changes of apoptotic proteins were determined with an antibody array. The preclinical characterization of PS121912 includes the determination of metabolic stability and CYP3A4 inhibition. RESULTS: PS121912 induced apoptosis in all four cancer cells, with HL-60 cells being the most sensitive. At sub-micromolar concentrations, PS121912 amplified the growth inhibition of cancer cells caused by 1,25-(OH)2D3 without being antiproliferative by itself. A knockout study with VDR si-RNA confirmed the mediating role of VDR. VDR target genes induced by 1,25-(OH)2D3 were down-regulated with the co-treatment of PS121912. This process was highly dependent on the recruitment of coregulators that in case of CYP24A1 was SRC2. The combination of PS121912 and 1,25-(OH)2D3 reduced the presence of SRC2 and enriched the occupancy of corepressor NCoR at the promoter site. E2F transcription factors 1 and 4 were down-regulated in the presence of PS121912 and 1,25-(OH)2D3 that in turn reduced the transcription levels of cyclin A and D, thus arresting HL-60 cells in the S or G2/M phase. In addition, proteins with hematopoietic functions such as cyclin-dependent kinase 6, histone deacetylase 9 and transforming growth factor beta 2 and 3 were down-regulated as well. Elevated levels of P21 and GADD45, in concert with cyclin D1, also mediated the antiproliferative response of HL-60 in the presence of 1,25-(OH)2D3 and PS121912. Studies at higher concentration of P121912 identified a VDR-independent pathway of antiproliferation that included the enzymatic and transcriptional activation of caspase 3/7. CONCLUSION: Overall, we conclude that PS121912 behaves like a VDR antagonist at low concentrations but interacts with more targets at higher concentrations leading to apoptosis mediated by caspase 3/7 activation. In addition, PS121912 showed an acceptable metabolic stability to enable in vivo cancer studies.


Subject(s)
Antimetabolites, Antineoplastic , Apoptosis/drug effects , Cell Proliferation/drug effects , Receptors, Calcitriol , Antimetabolites, Antineoplastic/metabolism , Antimetabolites, Antineoplastic/pharmacology , Apoptosis Regulatory Proteins/metabolism , Caco-2 Cells , Caspases, Effector/metabolism , Cytochrome P-450 CYP3A/metabolism , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Enzyme Activation/drug effects , HL-60 Cells , Humans , Receptors, Calcitriol/antagonists & inhibitors , Receptors, Calcitriol/metabolism , Transcriptional Activation/drug effects , Tumor Cells, Cultured
9.
ACS Med Chem Lett ; 5(2): 199-204, 2014 Feb 13.
Article in English | MEDLINE | ID: mdl-24799995

ABSTRACT

Nuclear receptor coregulators are master regulators of transcription and selectively interact with the vitamin D receptor (VDR) to modulate cell differentiation, cell proliferation and calcium homeostasis. Herein, we report the syntheses and evaluation of highly potent and selective VDR-coactivator inhibitors based on a recently identified 3-indolylmethanamine scaffold. The most active compound, PS121912, selectively inhibited VDR-mediated transcription among eight other nuclear receptors tested. PS121912 is also selectively disrupting the binding between VDR and the third nuclear receptor interaction domain of the coactivator SRC2. Genetic studies revealed that PS121912 behaves like a VDR antagonist by repressing 1,25-(OH)2D3 activated gene transcription. In addition, PS121912 induced apoptosis in HL-60.

10.
Biochem Soc Trans ; 42(2): 461-7, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24646261

ABSTRACT

Many current pharmacological treatments for neuropsychiatric disorders, such as anxiety and depression, are limited by a delayed onset of therapeutic effect, adverse side effects, abuse potential or lack of efficacy in many patients. These off-target effects highlight the need to identify novel mechanisms and targets for treatment. Recently, modulation of Glo1 (glyoxalase I) activity was shown to regulate anxiety-like behaviour and seizure-susceptibility in mice. These effects are likely to be mediated through the regulation of MG (methylglyoxal) by Glo1, as MG acts as a competitive partial agonist at GABA(A) (γ-aminobutyric acid A) receptors. Thus modulation of MG by Glo1 represents a novel target for treatment. In the present article, we evaluate the therapeutic potential of indirectly modulating MG concentrations through Glo1 inhibitors for the treatment of neuropsychiatric disorders.


Subject(s)
Anticonvulsants/therapeutic use , Lactoylglutathione Lyase/antagonists & inhibitors , Seizures/drug therapy , Animals , Humans , Pyruvaldehyde/metabolism , Seizures/metabolism
11.
Biochemistry ; 52(24): 4193-203, 2013 Jun 18.
Article in English | MEDLINE | ID: mdl-23713684

ABSTRACT

A high-throughput screening campaign was conducted to identify small molecules with the ability to inhibit the interaction between the vitamin D receptor (VDR) and steroid receptor coactivator 2. These inhibitors represent novel molecular probes for modulating gene regulation mediated by VDR. Peroxisome proliferator-activated receptor (PPAR) δ agonist GW0742 was among the identified VDR-coactivator inhibitors and has been characterized herein as a pan nuclear receptor antagonist at concentrations of > 12.1 µM. The highest antagonist activity for GW0742 was found for VDR and the androgen receptor. Surprisingly, GW0742 behaved as a PPAR agonist and antagonist, activating transcription at lower concentrations and inhibiting this effect at higher concentrations. A unique spectroscopic property of GW0742 was identified as well. In the presence of rhodamine-derived molecules, GW0742 increased the fluorescence intensity and level of fluorescence polarization at an excitation wavelength of 595 nm and an emission wavelength of 615 nm in a dose-dependent manner. The GW0742-inhibited NR-coactivator binding resulted in a reduced level of expression of five different NR target genes in LNCaP cells in the presence of agonist. Especially VDR target genes CYP24A1, IGFBP-3, and TRPV6 were negatively regulated by GW0742. GW0742 is the first VDR ligand inhibitor lacking the secosteroid structure of VDR ligand antagonists. Nevertheless, the VDR-meditated downstream process of cell differentiation was antagonized by GW0742 in HL-60 cells that were pretreated with the endogenous VDR agonist 1,25-dihydroxyvitamin D3.


Subject(s)
Cell Nucleus/metabolism , Nuclear Receptor Coactivator 2/chemistry , PPAR delta/agonists , Receptors, Calcitriol/chemistry , Thiazoles/pharmacology , Cell Line, Tumor , DNA/chemistry , Dose-Response Relationship, Drug , HEK293 Cells , HL-60 Cells , Humans , Inhibitory Concentration 50 , Ligands , Protein Binding , Rhodamines/chemistry , Spectrophotometry/methods
12.
J Med Chem ; 56(12): 5059-70, 2013 Jun 27.
Article in English | MEDLINE | ID: mdl-23718540

ABSTRACT

We recently designed a group of novel exosite-2-directed sulfated, small, allosteric inhibitors of thrombin. To develop more potent inhibitors, monosulfated benzofuran tri- and tetrameric homologues of the parent designed dimers were synthesized in seven to eight steps and found to exhibit a wide range of potencies. Among these, trimer 9a was found to be nearly 10-fold more potent than the first generation molecules. Michaelis-Menten studies indicated an allosteric mechanism of inhibition. Competitive studies using a hirudin peptide (exosite 1 ligand) and unfractionated heparin, heparin octasaccharide, and γ'-fibrinogen peptide (exosite 2 ligands) demonstrated exosite 2 recognition in a manner different from that of the parent dimers. Alanine scanning mutagenesis of 12 Arg/Lys residues of exosite 2 revealed a defect in 9a potency for Arg233Ala thrombin only confirming the major difference in site of recognition between the two structurally related sulfated benzofurans. The results suggest that multiple avenues are available within exosite 2 for inducing thrombin inhibition.


Subject(s)
Drug Design , Serine Proteinase Inhibitors/chemistry , Serine Proteinase Inhibitors/pharmacology , Sulfates/chemistry , Thrombin/antagonists & inhibitors , Thrombin/metabolism , Allosteric Regulation/drug effects , Benzofurans/chemistry , Binding Sites , Blood Coagulation/drug effects , Dimerization , Humans , Kinetics , Models, Molecular , Protein Conformation , Serine Proteinase Inhibitors/chemical synthesis , Serine Proteinase Inhibitors/metabolism , Substrate Specificity , Thrombin/chemistry
13.
Bioorg Med Chem Lett ; 23(1): 355-9, 2013 Jan 01.
Article in English | MEDLINE | ID: mdl-23164711

ABSTRACT

The design of sulfated, small, nonsaccharide molecules as modulators of proteins is still in its infancy as standard drug discovery tools such as library of diverse sulfated molecules and in silico docking and scoring protocol have not been firmly established. Databases, such as ZINC, contain too few sulfate-containing nonsaccharide molecules, which severely limits the identification of new hits. Lack of a generally applicable protocol for scaffold hopping limits the development of sulfated small molecules as synthetic mimetics of the highly sulfated glycosaminoglycans. We explored a sequential ligand-based (LBVS) and structure-based virtual screening (SBVS) approach starting from our initial discovery of monosulfated benzofurans to discover alternative scaffolds as allosteric modulators of thrombin, a key coagulation enzyme. Screening the ZINC database containing nearly 1 million nonsulfated small molecules using a pharmacophore developed from the parent sulfated benzofurans followed by a genetic algorithm-based dual-filter docking and scoring screening identified a group of 10 promising hits, of which three top-scoring hits were synthesized. Each was found to selectively inhibit human alpha-thrombin suggesting the possibility of this approach for scaffold hopping. Michaelis-Menten kinetics showed allosteric inhibition mechanism for the best molecule and human plasma studies confirmed good anticoagulation potential as expected. Our simple sequential LBVS and SBVS approach is likely to be useful as a general strategy for identification of sulfated small molecules hits as modulators of glycosaminoglycan-protein interactions.


Subject(s)
Biomimetic Materials/chemistry , Glycosaminoglycans/chemistry , Small Molecule Libraries/chemistry , Sulfates/chemistry , Algorithms , Allosteric Regulation/drug effects , Biomimetic Materials/chemical synthesis , Biomimetic Materials/pharmacology , Drug Evaluation, Preclinical , Humans , Kinetics , Small Molecule Libraries/chemical synthesis , Small Molecule Libraries/pharmacology , Thrombin/antagonists & inhibitors , Thrombin/metabolism
14.
Genes Cancer ; 4(11-12): 524-34, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24386512

ABSTRACT

Hypercalcemia remains a major impediment to the clinical use of vitamin D in cancer treatment. Approaches to remove hypercalcemia and development of nonhypercalcemic agents can lead to the development of vitamin D-based therapies for treatment of various cancers. In this report, in vitro and in vivo anticancer efficacy, safety, and details of vitamin D receptor (VDR) interactions of PT19c, a novel nonhypercalcemic vitamin D derived anticancer agent, are described. PT19c was synthesized by bromoacetylation of PTAD-ergocalciferol adduct. Broader growth inhibitory potential of PT19c was evaluated in a panel of chemoresistant breast, renal, ovarian, lung, colon, leukemia, prostate, melanoma, and central nervous system cancers cell line types of NCI60 cell line panel. Interactions of PT19c with VDR were determined by a VDR transactivation assay in a VDR overexpressing VDR-UAS-bla-HEK293 cells, in vitro VDR-coregulator binding, and molecular docking with VDR-ligand binding domain (VDR-LBD) in comparison with calcitriol. Acute toxicity of PT19c was determined in nontumored mice. In vivo antitumor efficacy of PT19c was determined via ovarian and endometrial cancer xenograft experiments. Effect of PT19c on actin filament organization and focal adhesion formation was examined by microscopy. PT19c treatment inhibited growth of chemoresistant NCI60 cell lines (log10GI50 ~ -4.05 to -6.73). PT19c (10 mg/kg, 35 days) reduced growth of ovarian and endometrial xenograft tumor without hypercalcemia. PT19c exerted no acute toxicity up to 400 mg/kg (QDx1) in animals. PT19c showed weak VDR antagonism, lack of VDR binding, and inverted spatial accommodation in VDR-LBD. PT19c caused actin filament dysfunction and inhibited focal adhesion in SKOV-3 cells. PT19c is a VDR independent nonhypercalcemic vitamin D-derived agent that showed noteworthy safety and efficacy in ovarian and endometrial cancer animal models and inhibited actin organization and focal adhesion in ovarian cancer cells.

15.
J Med Chem ; 55(15): 6888-97, 2012 Aug 09.
Article in English | MEDLINE | ID: mdl-22788964

ABSTRACT

Earlier, we reported on the design of sulfated benzofuran dimers (SBDs) as allosteric inhibitors of thrombin (Sidhu et al. J. Med. Chem.201154 5522-5531). To identify the site of binding of SBDs, we studied thrombin inhibition in the presence of exosite 1 and 2 ligands. Whereas hirudin peptide and heparin octasaccharide did not affect the IC(50) of thrombin inhibition by a high affinity SBD, the presence of full-length heparin reduced inhibition potency by 4-fold. The presence of γ' fibrinogen peptide, which recognizes Arg93, Arg97, Arg173, Arg175, and other residues, resulted in a loss of affinity that correlated with the ideal Dixon-Webb competitive profile. Replacement of several arginines and lysines of exosite 2 with alanine did not affect thrombin inhibition potency, except for Arg173, which displayed a 22-fold reduction in IC(50). Docking studies suggested a hydrophobic patch around Arg173 as a plausible site of SBD binding to thrombin. The absence of the Arg173-like residue in factor Xa supported the observed selectivity of inhibition by SBDs. Cellular toxicity studies indicated that SBDs are essentially nontoxic to cells at concentrations as high as 250 mg/kg. Overall, the work presents the localization of the SBD binding site, which could lead to allosteric modulators of thrombin that are completely different from all clinically used anticoagulants.


Subject(s)
Anticoagulants/chemical synthesis , Arginine/genetics , Arylsulfonates/chemical synthesis , Benzofurans/chemical synthesis , Thrombin/antagonists & inhibitors , Allosteric Regulation , Anticoagulants/chemistry , Anticoagulants/toxicity , Arylsulfonates/chemistry , Arylsulfonates/toxicity , Benzofurans/chemistry , Benzofurans/toxicity , Binding Sites , Cell Line , Dimerization , Factor Xa Inhibitors , Fibrinogen/chemistry , Heparin/chemistry , Humans , Kinetics , Models, Molecular , Mutation , Protein Binding , Recombinant Proteins/antagonists & inhibitors , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Structure-Activity Relationship , Thrombin/chemistry , Thrombin/genetics
16.
J Med Chem ; 54(15): 5522-31, 2011 Aug 11.
Article in English | MEDLINE | ID: mdl-21714536

ABSTRACT

Thrombin is a key enzyme targeted by the majority of current anticoagulants that are direct inhibitors. Allosteric inhibition of thrombin may offer a major advantage of finely tuned regulation. We present here sulfated benzofurans as the first examples of potent, small allosteric inhibitors of thrombin. A sulfated benzofuran library of 15 sulfated monomers and 13 sulfated dimers with different charged, polar, and hydrophobic substituents was studied in this work. Synthesis of the sulfated benzofurans was achieved through a multiple step, highly branched strategy, which culminated with microwave-assisted chemical sulfation. Of the 28 potential inhibitors, 11 exhibited reasonable inhibition of human α-thrombin at pH 7.4. Structure-activity relationship analysis indicated that sulfation at the 5-position of the benzofuran scaffold was essential for targeting thrombin. A tert-butyl 5-sulfated benzofuran derivative was found to be the most potent thrombin inhibitor with an IC(50) of 7.3 µM under physiologically relevant conditions. Michaelis-Menten studies showed an allosteric inhibition phenomenon. Plasma clotting assays indicate that the sulfated benzofurans prolong both the activated partial thromboplastin time and prothrombin time. Overall, this work puts forward sulfated benzofurans as the first small, synthetic molecules as powerful lead compounds for the design of a new class of allosteric inhibitors of thrombin.


Subject(s)
Benzofurans/chemical synthesis , Thrombin/antagonists & inhibitors , Allosteric Regulation/drug effects , Allosteric Site/drug effects , Benzofurans/pharmacology , Drug Design , Humans , Inhibitory Concentration 50 , Kinetics , Partial Thromboplastin Time , Prothrombin Time , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...