Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Lett ; 43(22): 5693-5696, 2018 Nov 15.
Article in English | MEDLINE | ID: mdl-30439930

ABSTRACT

We demonstrate free-beam spectral self-compression of ~100-GW femtosecond laser pulses due to self-phase modulation (SPM) in a transparent dielectric. While all the earlier studies of SPM-induced spectral narrowing have been performed using optical fibers, experiments and simulations presented in this Letter show that this type of spectral transformation can be implemented as a part of a full three-dimensional field-waveform dynamics and can be extended to peak powers ∼105 times higher than the critical power of self-focusing. With a properly chosen initial chirp, spectral self-compression is accompanied by pulse compression, providing spectral-temporal mode self-compression as a whole.

2.
Nat Commun ; 8: 15362, 2017 05 22.
Article in English | MEDLINE | ID: mdl-28530239

ABSTRACT

Thermogenetics is a promising innovative neurostimulation technique, which enables robust activation of neurons using thermosensitive transient receptor potential (TRP) cation channels. Broader application of this approach in neuroscience is, however, hindered by a limited variety of suitable ion channels, and by low spatial and temporal resolution of neuronal activation when TRP channels are activated by ambient temperature variations or chemical agonists. Here, we demonstrate rapid, robust and reproducible repeated activation of snake TRPA1 channels heterologously expressed in non-neuronal cells, mouse neurons and zebrafish neurons in vivo by infrared (IR) laser radiation. A fibre-optic probe that integrates a nitrogen-vacancy (NV) diamond quantum sensor with optical and microwave waveguide delivery enables thermometry with single-cell resolution, allowing neurons to be activated by exceptionally mild heating, thus preventing the damaging effects of excessive heat. The neuronal responses to the activation by IR laser radiation are fully characterized using Ca2+ imaging and electrophysiology, providing, for the first time, a complete framework for a thermogenetic manipulation of individual neurons using IR light.


Subject(s)
Calcium/metabolism , Neurons/metabolism , Thermogenesis , Transient Receptor Potential Channels/physiology , Action Potentials , Animals , Cells, Cultured , Electrophysiology/methods , HEK293 Cells , Hot Temperature , Humans , Ions , Lasers , Mice , Mice, Inbred C57BL , Microwaves , Snakes , Zebrafish
SELECTION OF CITATIONS
SEARCH DETAIL
...