Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 24(5)2023 Mar 02.
Article in English | MEDLINE | ID: mdl-36902300

ABSTRACT

The production and transplantation of functionally active human neurons is a promising approach to cell therapy. Biocompatible and biodegradable matrices that effectively promote the growth and directed differentiation of neural precursor cells (NPCs) into the desired neuronal types are very important. The aim of this study was to evaluate the suitability of novel composite coatings (CCs) containing recombinant spidroins (RSs) rS1/9 and rS2/12 in combination with recombinant fused proteins (FP) carrying bioactive motifs (BAP) of the extracellular matrix (ECM) proteins for the growth of NPCs derived from human induced pluripotent stem cells (iPSC) and their differentiation into neurons. NPCs were produced by the directed differentiation of human iPSCs. The growth and differentiation of NPCs cultured on different CC variants were compared with a Matrigel (MG) coating using qPCR analysis, immunocytochemical staining, and ELISA. An investigation revealed that the use of CCs consisting of a mixture of two RSs and FPs with different peptide motifs of ECMs increased the efficiency of obtaining neurons differentiated from iPSCs compared to Matrigel. CC consisting of two RSs and FPs with Arg-Gly-Asp-Ser (RGDS) and heparin binding peptide (HBP) is the most effective for the support of NPCs and their neuronal differentiation.


Subject(s)
Fibroins , Induced Pluripotent Stem Cells , Neural Stem Cells , Humans , Fibroins/metabolism , Extracellular Matrix Proteins/metabolism , Neurons , Cell Differentiation , Peptides/pharmacology
2.
ACS Omega ; 6(23): 15264-15273, 2021 Jun 15.
Article in English | MEDLINE | ID: mdl-34151105

ABSTRACT

The interaction of neural progenitor cells (NPCs) with the extracellular matrix (ECM) plays an important role in neural tissue regeneration. Understanding which motifs of the ECM proteins are crucial for normal NPC adhesion, proliferation, and differentiation is important in order to create more adequate tissue engineered models of neural tissue and to efficiently study the central nervous system regeneration mechanisms. We have shown earlier that anisotropic matrices prepared from a mixture of recombinant dragline silk proteins, such as spidroin 1 and spidroin 2, by electrospinning are biocompatible with NPCs and provide good proliferation and oriented growth of neurites. This study objective was to find the effects of spidroin-based electrospun materials, modified with peptide motifs of the extracellular matrix proteins (RGD, IKVAV, and VAEIDGIEL) on adhesion, proliferation, and differentiation of directly reprogrammed neural precursor cells (drNPCs). The structural and biomechanical studies have shown that spidroin-based electrospun mats (SBEM), modified with ECM peptides, are characterized by a uniaxial orientation and elastic moduli in the swollen state, comparable to those of the dura mater. It has been found for the first time that drNPCs on SBEM mostly preserve their stemness in the growth medium and even in the differentiation medium with brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor, while addition of the mentioned ECM-peptide motifs may shift the balance toward neuroglial differentiation. We have demonstrated that the RGD motif promotes formation of a lower number of neurons with longer neurites, while the IKVAV motif is characterized by formation of a greater number of NF200-positive neurons with shorter neurites. At the same time, all the studied matrices preserve up to 30% of neuroglial progenitor cells, phenotypically similar to radial glia derived from the subventricular zone. We believe that, by using this approach and modifying spidroin by various ECM-motifs or other substances, one may create an in vitro model for the neuroglial stem cell niche with the potential control of their differentiation.

3.
Data Brief ; 34: 106710, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33490330

ABSTRACT

A dataset of four draft genome sequences of Bifidobacterium strains is presented. All four genome assemblies are high-quality drafts characterized by high completeness and low contamination levels. GC content of the genomes varied in the range between 59.27% and 62.77%. Genome sequences were annotated for further functional and taxonomical analyses of the respective Bifidobacterium strains. Genetic determinants of probiotic capabilities, including the genes, related to utilization of human milk oligosaccharides and mucin, as well as the genes, encoding bile salt hydrolase were identified. The genome of B. bifidum VKPM=Ac-1784 has been shown to possess two bacteriocin gene clusters. The dataset expands knowledge on genomic diversity of probiotic strains of Bifidobacterium genus. The dataset is available under PRJNA656137 accession number in NCBI database and under zyv26t6x5r accession number in Mendeley Data repository.

4.
PLoS One ; 13(1): e0191289, 2018.
Article in English | MEDLINE | ID: mdl-29351332

ABSTRACT

For decades respiratory chain and photosystems were the main firing field of the studies devoted to mechanisms of electron transfer in proteins. The concept of conjugated lateral electron and transverse proton transport during cellular respiration and photosynthesis, which was formulated in the beginning of 1960-s, has been confirmed by thousands of experiments. However, charge transfer in recently discovered bacterial nanofilaments produced by various electrogenic bacteria is regarded currently outside of electron and proton conjugation concept. Here we report the new study of charge transfer within nanofilaments produced by Shewanella oneidensis MR-1 conducted in atmosphere of different relative humidity (RH). We utilize impedance spectroscopy and DC (direct current) transport measurements to find out the peculiarities of conductivity and Raman spectroscopy to analyze the nanofilaments' composition. Data analysis demonstrates that apparent conductivity of nanofilaments has crucial sensitivity to humidity and contains several components including one with unusual behavior which we assign to electron transport. We demonstrate that in the case of Shewanella oneidensis MR-1 charge transfer within these objects is strongly mediated by water. Basing on current data analysis of conductivity we conclude that the studied filaments of Shewanella oneidensis MR-1 are capable of hybrid (conjugated) electron and ion conductivity.


Subject(s)
Shewanella/metabolism , Water/metabolism , Cytochromes/chemistry , Cytochromes/metabolism , Dielectric Spectroscopy , Electron Transport , Heme/metabolism , Humidity , Shewanella/cytology
5.
PLoS One ; 10(3): e0121155, 2015.
Article in English | MEDLINE | ID: mdl-25799394

ABSTRACT

In the present study, we examined the ability of the recombinant spidroin to serve as a substrate for the cardiac tissue engineering. For this purpose, isolated neonatal rat cardiomyocytes were seeded on the electrospun spidroin fiber matrices and cultured to form the confluent cardiac monolayers. Besides the adhesion assay and immunostaining analysis, we tested the ability of the cultured cardiomyocytes to form a functional cardiac syncytium by studying excitation propagation in the cultured tissue with the aid of optical mapping. It was demonstrated that recombinant spidroin fiber meshes are directly suitable for the adherence and growth of the cardiomyocytes without additional coating with the attachment factors, such as fibronectin.


Subject(s)
Fibroins/metabolism , Myocytes, Cardiac/cytology , Tissue Engineering/methods , Animals , Cell Adhesion , Cell Proliferation , Cells, Cultured , Fibroins/genetics , Myocytes, Cardiac/metabolism , Rats , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Tissue Scaffolds
6.
J Neuroimmune Pharmacol ; 4(1): 17-27, 2009 Mar.
Article in English | MEDLINE | ID: mdl-18839314

ABSTRACT

Spider dragline silk possesses impressive mechanical and biochemical properties. It is synthesized by a couple of major ampullate glands in spiders and comprises of two major structural proteins--spidroins 1 and 2. The relationship between structure and mechanical properties of spider silk is not well understood. Here, we modeled the complete process of the spider silk assembly using two new recombinant analogs of spidroins 1 and 2. The artificial genes sequence of the hydrophobic core regions of spidroin 1 and 2 have been designed using computer analysis of existing databases and mathematical modeling. Both proteins were expressed in Pichia pastoris and purified using a cation exchange chromatography. Despite the absence of hydrophilic N- and C-termini, both purified proteins spontaneously formed the nanofibrils and round micelles of about 1 microm in aqueous solutions. The electron microscopy study has revealed the helical structure of a nanofibril with a repeating motif of 40 nm. Using the electrospinning, the thin films with an antiparallel beta-sheet structure were produced. In summary, we were able to obtain artificial structures with characteristics that are perspective for further biomedical applications, such as producing three-dimensional matrices for tissue engineering and drug delivery.


Subject(s)
Biocompatible Materials/chemistry , Silk/chemistry , Silk/genetics , Spiders/chemistry , Spiders/genetics , Animals , Circular Dichroism , Microscopy, Atomic Force , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission , Models, Molecular , Models, Statistical , Nanotechnology , Recombinant Proteins/chemistry , Silk/ultrastructure , Solutions , Spectrometry, Mass, Electrospray Ionization , Spectrophotometry, Infrared , Tissue Engineering
SELECTION OF CITATIONS
SEARCH DETAIL
...