Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Immunol ; 4(41)2019 11 22.
Article in English | MEDLINE | ID: mdl-31757835

ABSTRACT

MR1-restricted mucosal-associated invariant T (MAIT) cells play a unique role in the immune system. These cells develop intrathymically through a three-stage process, but the events that regulate this are largely unknown. Here, using bulk and single-cell RNA sequencing-based transcriptomic analysis in mice and humans, we studied the changing transcriptional landscape that accompanies transition through each stage. Many transcripts were sharply modulated during MAIT cell development, including SLAM (signaling lymphocytic activation molecule) family members, chemokine receptors, and transcription factors. We also demonstrate that stage 3 "mature" MAIT cells comprise distinct subpopulations including newly arrived transitional stage 3 cells, interferon-γ-producing MAIT1 cells and interleukin-17-producing MAIT17 cells. Moreover, the validity and importance of several transcripts detected in this study are directly demonstrated using specific mutant mice. For example, MAIT cell intrathymic maturation was found to be halted in SLAM-associated protein (SAP)-deficient and CXCR6-deficient mouse models, providing clear evidence for their role in modulating MAIT cell development. These data underpin a model that maps the changing transcriptional landscape and identifies key factors that regulate the process of MAIT cell differentiation, with many parallels between mice and humans.


Subject(s)
Mucosal-Associated Invariant T Cells/immunology , Signaling Lymphocytic Activation Molecule Family/genetics , Transcription, Genetic/genetics , Adult , Animals , Cell Differentiation/immunology , Humans , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Transgenic , Signaling Lymphocytic Activation Molecule Family/immunology
2.
Hum Immunol ; 79(9): 659-667, 2018 Sep.
Article in English | MEDLINE | ID: mdl-29913200

ABSTRACT

Older kidney transplant recipients experience increased rates of infection and death, and less rejection, compared with younger patients. However, little is known about immune dysfunction in older compared with younger kidney transplant recipients and whether it is associated with infection. We evaluated T cell phenotypes including maturation, immune senescence, and exhaustion in a novel investigation into differences in older compared with younger patients receiving identical immune suppression regimens. We evaluated PBMC from 60 kidney transplant recipients (23 older and 37 matched younger patients) by multiparameter immune phenotyping. Older kidney transplant recipients demonstrated decreased frequency of naïve CD4+ and CD8+ T cells, and increased frequency of terminally differentiated, immune senescent, and NK T cells expressing KLRG1. There was a trend towards increased frequency of T cell immune senescence in patients experiencing infection in the first year after transplantation, which reached statistical significance in a multivariate analysis. This pilot study reveals immune dysfunction in older compared with younger transplant recipients, and suggests a likely mechanism for increased vulnerability to infection. The ability to assess T cell maturation and immune senescence in transplant recipients offers the potential for risk stratification and customization of immune suppression to prevent infection and rejection after transplantation.


Subject(s)
Graft Rejection/immunology , Kidney Transplantation , Lymphocyte Subsets/physiology , Natural Killer T-Cells/physiology , T-Lymphocytes/physiology , Adult , Age Factors , Aged , Aged, 80 and over , Cell Differentiation , Cellular Senescence , Female , Humans , Immunocompromised Host , Male , Middle Aged , Phenotype , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...