Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Adv ; 8(46): eadd9320, 2022 Nov 18.
Article in English | MEDLINE | ID: mdl-36383662

ABSTRACT

Open framework materials such as zeolites and metalorganic frameworks are garnering tremendous interest because of their intriguing architecture and attractive functionalities. Thus, new types of open framework materials are highly sought after. Here, we present the discovery of completely new inorganic framework materials, where, in contrast to conventional inorganic open frameworks, the scaffold is not based on tetrahedral EO4 (E = main group element) but octahedral MO6 (M = transition metal) building blocks. These structural features place them closer to polyoxometalates than zeolites. The first representatives of this class of materials are [(R)24(NH4)14(PO(OH)2)6]·[M134(PO3(OH,F))96F120] (M = Co, R = C2Py = 1-ethylpyridinium and M = Ni, R = C4C1Py = 1-butyl-3-methylpyridinium) featuring interlinked fullerene-like nanosphere cavities. Having a transition metal building up the framework brings about interesting properties, for example, spin-glass behavior, and, with this particular topology, a hedgehog-like spin orientation.

2.
Sci Rep ; 12(1): 9248, 2022 Jun 03.
Article in English | MEDLINE | ID: mdl-35665754

ABSTRACT

The structural and magnetic properties of the ThCr2Si2-type solid solution LaMn2(Ge1-xSix)2 (x = 0.0 to 1.0) have been investigated employing a combination of X-ray diffraction, magnetization and neutron diffraction measurements, which allowed establishing a magnetic composition-temperature phase diagram. Substitution of Ge by Si leads to a compression of the unit cell, which affects the magnetic exchange interactions. In particular, the magnetic structure of LaMn2(Ge1-xSix)2 is strongly affected by the unit cell parameter c, which is related to the distance between adjacent Mn layers. Commensurate antiferromagnetic layers and a canted ferromagnetic structure dominate the Si-rich part of the solid solution, whilst an incommensurate antiferromagnetic flat spiral and a conical magnetic structure are observed in the Si-poor part.

3.
Inorg Chem ; 61(25): 9767-9775, 2022 Jun 27.
Article in English | MEDLINE | ID: mdl-35699656

ABSTRACT

By employing the pyridinium hexafluorophosphate task-specific ionic liquids 1-butyl-4-methylpyridinium hexafluorophosphate ([C4mpyr][PF6]) and 1-ethylpyridinium hexafluorophosphate ([C2pyr][PF6]) as the reaction medium, mineralizer, structure-directing agent, and, in the case of the smaller pyridinium cation, even a structural component, it was possible to obtain five new alkali metal iron phosphates featuring interconnected FeX6 octahedra and PX4 (X = F, O, or OH) tetrahedra. NaFe(PO3F)2 (1) is a dense 3D structure, RbFe(PO3F)(PO2(OH)F)(PO2(OH)2) (2) features 1D strands, (C2pyr)LiFe(PO3F)3(PO2F2)F (3) has 2D layers, and LiFe(PO3F)(PO2F2)F (4) as well as Cs0.75Fe(PO2.75(OH)0.25F)(PO2F2)2 (5) are 3D open frameworks. While in 1-2 as well as in 4 and 5, FeX6 octahedra and PX4 (X = F, O, or OH) tetrahedra alternate, 3 features octahedra dimers, Fe2X11 (X = F, O, or OH). The magnetic behavior of all compounds is governed by antiferromagnetic interactions. Interestingly, 3 exhibits a broad maximum in the temperature dependence of the magnetic susceptibility, characteristic of a low-dimensional magnetic system consistent with the presence of Fe-Fe dimers in its crystal structure.

4.
J Chem Phys ; 153(10): 104501, 2020 Sep 14.
Article in English | MEDLINE | ID: mdl-32933281

ABSTRACT

A new ionothermal synthesis utilizing 1-alkyl-pyridinium hexafluorophosphates [CxPy][PF6] (x = 2, 4, 6) led to the formation of highly crystalline single-phase ammonium cobalt trifluoride, (NH4)CoF3. Although ammonium transition-metal fluorides have been extensively studied with respect to their structural and magnetic properties, multiple aspects remain unclear. For that reason, the obtained (NH4)CoF3 has been investigated over a broad temperature range by means of single-crystal and powder x-ray diffraction as well as magnetization and specific heat measurements. In addition, energy-dispersive x-ray and vibrational spectroscopy as well as thermal analysis measurements were undertaken. (NH4)CoF3 crystallizes in the cubic perovskite structure and undergoes a structural distortion to a tetragonal phase at 127.7 K, which also is observable in the magnetic susceptibility measurements, which has not been observed before. A second magnetic phase transition occurring at 116.9 K is of second-order character. The bifurcation of the susceptibility curves indicates a canted antiferromagnetic ordering. At 2.5 K, susceptibility measurements point to a third phase change for (NH4)CoF3.

5.
Inorg Chem ; 58(19): 13203-13212, 2019 Oct 07.
Article in English | MEDLINE | ID: mdl-31539232

ABSTRACT

A set of different open framework iron phosphates have been synthesized ionothermally using a task-specific ionic liquid, 1-butyl-4-methylpyridinium hexafluorophosphate, that acts in the synthesis as the reaction medium and mineralizer: (NH4)2Fe2(HPO4)(PO4)Cl2F (1) and K2Fe2(HPO4)(PO4)Cl2F (2) exhibit similar composition and closely related structural features. Both structures consist of {Fe2(HPO4)(PO4)Cl2F}2- macroanions and charge balancing ammonium or potassium cations. Their open framework structure contains layers and chains of corner-linked {Fe(1)O2Cl4} and {Fe(2)F2O4} octahedra, respectively, interconnected by PO4 tetrahedra forming 10-ring channels. KFe(PO3F)F2 (3) is built up by {Fe[(PO3F)4/3F2/2]}{Fe(PO3F)2/3F2/2F2} layers separated by K+ cations. Chains of alternating {FeF2O4} and {FeO2F4} octahedra, which are linear for 1 but undulated for 2, are linked to each other via corner-sharing {PO3F} tetrahedra with the fluorine pointing into the interlayer space. The compounds were characterized by means of single crystal and powder X-ray diffraction, infrared spectroscopy, and magnetic measurements. 1 reveals a strong ground state spin anisotropy with a spin 5/2 state and a magnetic moment of 5.3 µB/Fe3+. Specific heat and magnetic data unveil three magnetic transitions at 95, 50, and 3.6 K. Compound 2 has a very similar crystal structure as compared to 1 but exhibits a different magnetic behavior: a slightly lower magnetic moment of 4.7 µB/Fe3+ and a magnetic transition to a canted antiferromagnetic state below 90 K. Compound 3 exhibits typical paramagnetic behavior close to room-temperature (5.71 µB/Fe3+). There are no clear indications for a phase transition down to 2 K despite strong antiferromagnetic spin-spin interactions; only a magnetic anomaly appears at 50 K in the zero-field cooled data.

SELECTION OF CITATIONS
SEARCH DETAIL
...