Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Chem Phys ; 146(20): 204904, 2017 May 28.
Article in English | MEDLINE | ID: mdl-28571383

ABSTRACT

Frequency domain super-heterodyne laser light scattering is utilized in a low angle integral measurement configuration to determine flow and diffusion in charged sphere suspensions showing moderate to strong multiple scattering. We introduce an empirical correction to subtract the multiple scattering background and isolate the singly scattered light. We demonstrate the excellent feasibility of this simple approach for turbid suspensions of transmittance T ≥ 0.4. We study the particle concentration dependence of the electro-kinetic mobility in low salt aqueous suspension over an extended concentration regime and observe a maximum at intermediate concentrations. We further use our scheme for measurements of the self-diffusion coefficients in the fluid samples in the absence or presence of shear, as well as in polycrystalline samples during crystallization and coarsening. We discuss the scope and limits of our approach as well as possible future applications.

2.
J Phys Condens Matter ; 24(46): 464109, 2012 Nov 21.
Article in English | MEDLINE | ID: mdl-23113974

ABSTRACT

We investigated the flow behaviour of colloidal charged-sphere suspensions using a newly designed integral low-angle super-heterodyne laser Doppler velocimetry instrument, which combines the advantages of several previous approaches. Sample conditions ranged from strong electrostatic interactions with pronounced short-range order to individual particles with no spatial correlations. The obtained power spectra correspond to diffusion broadened velocity distributions across the complete sample cross section. The excellent performance of the instrument is highlighted in detail by the example of electro-kinetic flow of suspensions in a closed cell of a rectangular cross section. We demonstrate the excellent performance of our approach with the example of electro-phoretic-electro-osmotic experiments, showing that a comprehensive flow characterization becomes possible by analysing the measured electro-kinetic mobilities, the flow-profile, an effective diffusion coefficient and the integrated scattering density. We briefly discuss present limitations, possible extensions and interesting applications in other fields.

SELECTION OF CITATIONS
SEARCH DETAIL
...