Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 20(27): 28855-61, 2012 Dec 17.
Article in English | MEDLINE | ID: mdl-23263126

ABSTRACT

We demonstrate the fabrication of single mode optical waveguides by irradiating polydimethylsiloxane (PDMS) with a low cost Hg lamp through a conventional quartz mask. By increasing the refractive index of the irradiated areas, waveguiding is achieved with an attenuation of 0.47 dB/cm at a wavelength of 635 nm. The refractive index change is stable in ambient air and water for time periods of more than 3 months. The excitation of water-dispersed fluorescent nanoparticles in the evanescent field of the waveguide is demonstrated.


Subject(s)
Dimethylpolysiloxanes/chemistry , Optical Devices , Refractometry/instrumentation , Surface Plasmon Resonance/instrumentation , Transducers , Equipment Design , Equipment Failure Analysis , Ultraviolet Rays
2.
Appl Opt ; 50(17): 2594-600, 2011 Jun 10.
Article in English | MEDLINE | ID: mdl-21673761

ABSTRACT

We propose a modification of the Rayleigh scattering method, which allows for measurement of polarization and intermodal beat length in single-mode and few-mode channel waveguides and optical fibers. A significant sensitivity increase is achieved by taking two high-resolution photographs in oblique scattered light of π-shifted intensity distributions produced by interference of polarization or spatial modes and applying Fourier analysis to the differential image. In the case of polarization beat length measurements, the π-phase shift is obtained by switching the polarization state at the fiber input, while in intermodal measurements, the π-phase shifting is realized by changing the excitation conditions. The usefulness of the method for characterization of channel waveguides and optical fibers is demonstrated in several examples. Moreover, we show that the combination of the spectral interferometry method with the proposed method allows for broadband measurements of differential phase and group effective indices.

SELECTION OF CITATIONS
SEARCH DETAIL
...