Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Ger Med Sci ; 20: Doc11, 2022.
Article in English | MEDLINE | ID: mdl-36742459

ABSTRACT

Objective: The goal of this review was to identify decision-analytic modeling studies in early health technology assessments (HTA) of high-risk medical devices, published over the last three years, and to provide a systematic overview of model purposes and characteristics. Additionally, the aim was to describe recent developments in modeling techniques. Methods: For this scoping review, we performed a systematic literature search in PubMed and Embase including studies published in English or German. The search code consisted of terms describing early health technology assessment and terms for decision-analytic models. In abstract and full-text screening, studies were excluded that were not modeling studies for a high-risk medical device or an in-vitro diagnostic test. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) flow diagram was used to report on the search and exclusion of studies. For all included studies, study purpose, framework and model characteristics were extracted and reported in systematic evidence tables and a narrative summary. Results: Out of 206 identified studies, 19 studies were included in the review. Studies were either conducted for hypothetical devices or for existing devices after they were already available on the market. No study extrapolated technical data from early development stages to estimate potential value of devices in development. All studies except one included cost as an outcome. Two studies were budget impact analyses. Most studies aimed at adoption and reimbursement decisions. The majority of studies were on in-vitro diagnostic tests for personalized and targeted medicine. A timed automata model, to our knowledge a model type new to HTA, was tested by one study. It describes the agents in a clinical pathway in separate models and, by allowing for interaction between the models, can reflect complex individual clinical pathways and dynamic system interactions. Not all sources of uncertainty for in-vitro tests were explicitly modeled. Elicitation of expert knowledge and judgement was used for substitution of missing empirical data. Analysis of uncertainty was the most valuable strength of decision-analytic models in early HTA, but no model applied sensitivity analysis to optimize the test positivity cutoff with regard to the benefit-harm balance or cost-effectiveness. Value-of-information analysis was rarely performed. No information was found on the use of causal inference methods for estimation of effect parameters from observational data. Conclusion: Our review provides an overview of the purposes and model characteristics of nineteen recent early evaluation studies on medical devices. The review shows the growing importance of personalized interventions and confirms previously published recommendations for careful modeling of uncertainties surrounding diagnostic devices and for increased use of value-of-information analysis. Timed automata may be a model type worth exploring further in HTA. In addition, we recommend to extend the application of sensitivity analysis to optimize positivity criteria for in-vitro tests with regard to benefit-harm or cost-effectiveness. We emphasize the importance of causal inference methods when estimating effect parameters from observational data.


Subject(s)
Equipment and Supplies , Technology Assessment, Biomedical , Humans , Technology Assessment, Biomedical/methods
2.
Ger Med Sci ; 20: Doc12, 2022.
Article in English | MEDLINE | ID: mdl-36742460

ABSTRACT

Objectives: Public health decision making is a complex process based on thorough and comprehensive health technology assessments involving the comparison of different strategies, values and tradeoffs under uncertainty. This process must be based on best available evidence and plausible assumptions. Causal inference and health decision science are two methodological approaches providing information to help guide decision making in health care. Both approaches are quantitative methods that use statistical and modeling techniques and simplifying assumptions to mimic the complexity of the real world. We intend to review and lay out both disciplines with their aims, strengths and limitations based on a combination of textbook knowledge and expert experience. Methods: To help understanding and differentiating the methodological approaches of causal inference and health decision science, we reviewed both methods with the focus on aims, research questions, methods, assumptions, limitations and challenges, and software. For each methodological approach, we established a group of four experts from our own working group to carefully review and summarize each method, followed by structured discussion rounds and written reviews, in which the experts from all disciplines including HTA and medicine were involved. The entire expert group discussed objectives, strengths and limitations of both methodological areas, and potential synergies. Finally, we derived recommendations for further research and provide a brief outlook on future trends. Results: Causal inference methods aim for drawing causal conclusions from empirical data on the relationship of pre-specified interventions on a specific target outcome and apply a counterfactual framework and statistical techniques to derive causal effects of exposures or interventions from these data. Causal inference is based on a causal diagram, more specifically, a directed acyclic graph (DAG), which encodes the assumptions regarding the causal relations between variables. Depending on the type of confounding and selection bias, traditional statistical methods or more complex g-methods are needed to derive valid causal effects. Besides the correct specification of the DAG and the statistical model, assumptions such as consistency, positivity, and exchangeability must be checked when aiming at causal inference. Health decision science aims for guiding policy decision making regarding health interventions considering and balancing multiple competing objectives of a decision based on data from multiple sources and studies, for example prevalence studies, clinical trials and long-term observational routine effectiveness studies, and studies on preferences and costs. It involves decision analysis, a systematic, explicit and quantitative framework to guide decisions under uncertainty. Decision analyses are based on decision-analytic models to mimic the course of disease as well as aspects and consequences of the intervention in order to quantitatively optimize the decision. Depending on the type of decision problem, decision trees, state-transition models, discrete event simulation models, dynamic transmission models, or other model types are applied. Models must be validated against observed data, and comprehensive sensitivity analyses must be performed to assess uncertainty. Besides the appropriate choice of the model type and the valid specification of the model structure, it must be checked if input parameters of effects can be interpreted as causal parameters in the model. Otherwise results will be biased. Conclusions: Both causal inference and health decision science aim for providing best causal evidence for informed health decision making. The strengths and limitations of both methods differ and a good understanding of both methods is essential for correct application but also for correct interpretation of findings from the described methods. Importantly, decision-analytic modeling should be combined with causal inference when developing guidance and recommendations regarding decisions on health care interventions.


Subject(s)
Models, Statistical , Policy Making , Humans , Causality , Delivery of Health Care , Uncertainty
SELECTION OF CITATIONS
SEARCH DETAIL
...