Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Dalton Trans ; 51(15): 5962-5976, 2022 Apr 12.
Article in English | MEDLINE | ID: mdl-35348154

ABSTRACT

In recent years, the growing interest in applying photoelectrocatalysis (PEC) to decompose organic pollutants has resulted in the need to search for new photoelectrode materials with high activity under visible light radiation. The presented research showed an increased photoelectrocatalytic activity under sunlight of Ti/TiO2 sensitized with SnS quantum dots, obtained by the successive ionic layer adsorption and reaction (SILAR) method. The presence of SnS caused the enhanced absorption of visible irradiation and the reduction of recombination of generated charges by a p-n heterojunction created with the TiO2. The highest efficiency of photoelectrocatalytic degradation of anticancer drugs (ifosfamide, 5-fluorouracil, imatinib) was achieved for the SnS-Ti/TiO2 photoelectrode with a SnS quantum dot size from 4 to 10 nm. In addition, a decrease of IF PEC degradation efficiency was observed with increasing pH and with the presence of Cl-, NO3-, HCO3- and organic matter in the treated solution. Studies of the PEC mechanism have shown that drug degradation occurs mainly as a result of the direct and indirect action of photogenerated holes on the SnS-Ti/TiO2 photoelectrode, and the identified degradation products allowed for the presentation of the degradation pathway of IF, 5-FU and IMB. Duckweed (Lemna minor) growth inhibition tests showed no toxicity of the drug solutions after treatment.


Subject(s)
Antineoplastic Agents , Nanotubes , Quantum Dots , Antineoplastic Agents/pharmacology , Fluorouracil/pharmacology , Sunlight , Titanium
2.
J Hazard Mater ; 421: 126751, 2022 01 05.
Article in English | MEDLINE | ID: mdl-34343880

ABSTRACT

One of the challenges in research into photoelectrocatalytic (PEC) degradation of pollutants is finding the appropriate photoanode material, which has a significant impact on the process efficiency. Among all others, photoelectrodes based on an ordered TiO2 nanotube arrays are a promising material due to well-developed surface area and efficient charge separation. To increase the PEC activity of this material, the SILAR method was used to decorate Ti/TiO2 nanotubes by PbS quantum dots (QD). The ifosfamide (IF) degradation rate constants was twice as higher for PbS-Ti/TiO2 (0.0148 min-1) than for Ti/TiO2 (0.0072 min-1). Our research showed the highest efficiency of PEC degradation of drugs using IIIPbS-Ti/TiO2 made with 3 SILAR cycles (PbS QD size mainly 2-4 nm). The 4 and 6 of SILAR cycles resulted in the aggregation of PbS nanoparticles on the Ti/TiO2 surface and decreased IF PEC degradation rate to 0.0043 and 0.0033 min-1, respectively. Research on PEC mechanism has shown that the drugs are degraded mainly by the activity of photogenerated holes and hydroxyl radicals. In addition, the identified drug intermediates made possible to propose a degradation pathways of anticancer drugs and the ecotoxicity test show no inhibition of Lemna minor growth of treated solutions.


Subject(s)
Antineoplastic Agents , Nanotubes , Quantum Dots , Solar Energy , Titanium
3.
Molecules ; 24(23)2019 Nov 28.
Article in English | MEDLINE | ID: mdl-31795278

ABSTRACT

The recirculating split-flow batch reactor with a cell divided into anolyte and catholyte compartments for oxidation mixture of cytostatic drugs (CD) was tested. In this study, kinetics and mechanisms of electrochemical oxidization of two mixtures: 5-FU/CP and IF/CP were investigated. The order of the CD degradation rate in single drug solutions and in mixtures was found to be 5-FU < CP < IF. In the 5-FU/CP mixture, kapp of 5-FU increased, while kapp of CP decreased comparing to the single drug solutions. No effect on the degradation rate was found in the CP/IF mixture. The presence of a second drug in the 5-FU/CP mixture significantly altered mineralization and nitrogen removal efficiency, while these processes were inhibited in IF/CP. The experiments in the different electrolytes showed that •OH and sulphate active species can participate in the drug's degradation. The kapp of the drugs was accelerated by the presence of Cl- ions in the solution. Chlorine active species played the main role in the production of gaseous nitrogen products and increased the mineralisation. Good results were obtained for the degradation and mineralisation processes in mixtures of drugs in municipal wastewater-treated effluent, which is beneficial from the technological and practical point of view.


Subject(s)
Chemical Phenomena , Electrochemical Techniques , Oxidation-Reduction , Pharmaceutical Preparations/chemistry , Cytostatic Agents/chemistry , Kinetics
4.
Water Res ; 157: 610-620, 2019 Jun 15.
Article in English | MEDLINE | ID: mdl-31003076

ABSTRACT

The efficient and safe degradation of drugs present in wastewater requires the design of a new material possessing high activity for that process. In addition to other methods, photoelectrocatalysis (PEC) merges the strengths of both photocatalytic and electrochemical methods, and the efficiency could be enhanced by the type of photoelectrode material. To address this challenge, three Ti/TiO2 nanotube-based photoelectrodes, differing in their tube morphology, were prepared by anodic oxidation and employed for the degradation of the 5-fluorouracil (5-FU) drug by the PEC process. The highest efficiency for 5-fluorouracil (5-FU) degradation by PEC was observed for the photoelectrode with a 1.7 µm length, 65 nm diameter and 8 nm wall thickness of TiO2 nanotubes, which were prepared by Ti foil anodization at 30 V. The effects of applied potential, irradiation intensity, initial pH and 5-FU concentration on PEC were investigated. Furthermore, our findings showed that the mechanism of photoelectrocatalysis in the presence of TiO2 nanotubes is based on ∙OH and h+ activity. To determine the 5-FU degradation pathway, the organic byproducts were identified by LC-MS analysis. Furthermore, the ecotoxicity evaluated during PEC dropped with decreasing 5-FU concentration.


Subject(s)
Fluorouracil , Nanotubes , Electrodes , Oxidation-Reduction , Titanium
5.
Environ Sci Pollut Res Int ; 16(4): 453-8, 2009 Jun.
Article in English | MEDLINE | ID: mdl-18941817

ABSTRACT

BACKGROUND, AIM, AND SCOPE: Ionic liquids are regarded as essentially "green" chemicals because of their insignificant vapor pressure and, hence, are a good alternative to the emissions of toxic conventional volatile solvents. Not only because of their attractive industrial applications, but also due to their very high stability, ionic liquids could soon become persistent contaminants of technological wastewaters and, moreover, break through into natural waters following classical treatment systems. The removal of harmful organic pollutants has forced the development of new methodologies known as advanced oxidation processes (AOPs). Among them, the Fenton and Fenton-like reactions are usually modified by the use of a higher hydrogen peroxide concentration and through different catalysts. The aim of this study was to assess the effect of hydrogen peroxide concentration on degradation rates in a Fenton-like system of alkylimidazolium ionic liquids with alkyl chains of varying length and 3-methyl-N-butylpyridinium chloride. MATERIALS AND METHODS: The ionic liquids were oxidized in dilute aqueous solution in the presence of two different concentrations of hydrogen peroxide. All reactions were performed in the dark to prevent photoreduction of Fe(III). The concentrations of ionic liquids during the process were monitored with high-performance liquid chromatography. Preliminary degradation pathways were studied with the aid of (1)H NMR. RESULTS: Degradation of ionic liquids in this system was quite effective. Increasing the H(2)O(2) concentration from 100 to 400 mM improved ionic liquid degradation from 57-84% to 87-100% after 60 min reaction time. Resistance to degradation was weaker, the shorter the alkyl chain. DISCUSSION: The compound omimCl was more resistant to oxidation then other compounds, which suggests that the oxidation rates of imidazolium ionic liquids by OH. are structure-dependent and are correlated with the n-alkyl chain length substituted at the N-1-position. The level of degradation was dependent on the type of head group. Replacing the imidazolium head group with pyridinium increased resistance to degradation. Nonetheless, lengthening the alkyl chain from four to eight carbons lowered the rate of ionic liquid degradation to a greater extent than changing the head group from imidazolium to pyridinium. 1H-NMR spectra show, in the first stage of degradation, that it is likely that radical attack is nonspecific, with any one of the carbon atoms in the ring and the n-alkyl chain being susceptible to attack. CONCLUSIONS: The proposed method has proven to be an efficient and reliable method for the degradation of imidazolium ionic liquids by a Fenton-like reagent deteriorated with lengthening n-alkyl substituents and by replacing the imidazolium head group with pyridinium. The enhanced resistance of 1-butyl-3-methylpyridinium chloride when the resistance of imidazolium ionic liquids decreases with increasing H(2)O(2) concentration is probably indicative of a change in the degradation mechanism in a vigorous Fenton-like system. H-NMR spectra showed, in the first stage of degradation, that radical attack is nonspecific, with any one of the carbon atoms in the ring and the n-alkyl chain being susceptible to attack. RECOMMENDATIONS AND PERSPECTIVES: Since ionic liquids are now one of the most promising alternative chemicals of the future, the degradation and waste management studies should be integrated into a general development research of these chemicals. In the case of imidazolium and pyridinium ionic liquids that are known to be resistant to bio- or thermal degradation, studies in the field of AOPs should assist the future structural design as well as tailor the technological process of these chemicals.


Subject(s)
Imidazoles/chemistry , Ionic Liquids/chemistry , Pyridinium Compounds/chemistry , Green Chemistry Technology , Oxidation-Reduction
6.
Biotechnol Appl Biochem ; 51(Pt 2): 91-6, 2008 Oct.
Article in English | MEDLINE | ID: mdl-18211259

ABSTRACT

Common rue (Ruta graveolens L.) accumulates various types of secondary metabolites, such as coumarins furanocoumarins, acridone and quinolone alkaloids and flavonoids. Elicitation is a tool extensively used for enhancing secondary-metabolite yields. Chitin and chitosan are examples of elicitors inducing phytoalexin accumulation in plant tissue. The present paper describes the application of chitin and chitosan as potential elicitors of secondary-metabolite accumulation in R. graveolens shoots cultivated in vitro. The simple coumarins, linear furanocoumarins, dihydrofuranocoumarins and fluoroquinolone alkaloids biosynthesized in the presence of chitin and chitosan were isolated, separated and identified. There was a significant increase in the growth rate of R. graveolens shoots in the presence of either chitin or chitosan. Moreover, the results of the elicitation of coumarins and alkaloids accumulated by R. graveolens shoots in the presence of chitin and chitosan show that both compounds induced a significant increase in the concentrations of nearly all the metabolites. Adding 0.01% chitin caused the increase in the quantity (microg/g dry weight) of coumarins (pinnarin up to 116.7, rutacultin up to 287.0, bergapten up to 904.3, isopimpinelin up to 490.0, psoralen up to 522.2, xanhotoxin up to 1531.5 and rutamarin up to 133.7). The higher concentration of chitosan (0.1%) induced production of simple coumarins (pinnarin up to 116.7 and rutacultin up to 287.0), furanocoumarins (bergapten up to 904.3, isopimpinelin up to 490.0, psoralen up to 522.2, xanhotoxin up to 1531.5) and dihydrofuranocoumarins (chalepin up to 18 and rutamarin up to 133.7). Such a dramatic increase in the production of nearly all metabolites suggests that these compounds may be participating in the natural resistance mechanisms of R. graveolens. The application of chitin- and chitosan-containing media may be considered a promising prospect in the biotechnological production of xanthotoxin, isopimpinelin, psoralen, chalepin or methoxylated dictamnine derivatives.


Subject(s)
Alkaloids/biosynthesis , Chitin/pharmacology , Chitosan/pharmacology , Coumarins/metabolism , Fluoroquinolones/metabolism , Ruta/metabolism , Alkaloids/isolation & purification , Coumarins/isolation & purification , Dose-Response Relationship, Drug , Fluoroquinolones/isolation & purification , Plant Roots/drug effects , Plant Roots/metabolism , Ruta/drug effects
7.
Biotechnol Prog ; 24(1): 128-33, 2008.
Article in English | MEDLINE | ID: mdl-18052337

ABSTRACT

The study aimed to elucidate the effects of benzothiadiazole (BTH) and saccharin on the biosynthesis of simple coumarins, linear furanocoumarins, dihydrofuranocoumarins, and furoquinolone alkaloids in shoots of R. graveolens cultivated in vitro. The biosynthesized metabolites were analyzed and identified by GC-MS and by comparison of Kovats indices. Eight coumarin metabolites were identified: bergapten, chalepin, isopimpinelin, pinnarin, psoralen, rutacultin, rutamarin, and xanthotoxin, and also four alkaloids: dictamnine, gamma-fagarine, skimmianine, and kokusaginine. Each of the tested BTH concentrations induced a significant production of furanocoumarins and furoquinolone alkaloids. The use of saccharin also increased the production of bergapten, isopimpinelin, pinnarin, psoralen, and xanthotoxin several times.


Subject(s)
Ruta/drug effects , Ruta/metabolism , Saccharin/pharmacology , Thiadiazoles/pharmacology , 5-Methoxypsoralen , Benzopyrans/chemistry , Benzopyrans/metabolism , Coumarins/chemistry , Coumarins/metabolism , Ficusin/chemistry , Ficusin/metabolism , Furocoumarins/chemistry , Furocoumarins/metabolism , Gas Chromatography-Mass Spectrometry , Gene Expression Regulation, Plant/drug effects , Methoxsalen/analogs & derivatives , Methoxsalen/chemistry , Methoxsalen/metabolism , Plant Shoots/drug effects , Plant Shoots/metabolism , Quinolines/chemistry , Quinolines/metabolism
8.
Water Environ Res ; 79(11): 2318-24, 2007 Oct.
Article in English | MEDLINE | ID: mdl-17966699

ABSTRACT

The effect of chloride and sulfate ions on the oxidation of methyl tert-butyl ether (MTBE) and its degradation products in a Fenton-like system was studied. Although both chloride and sulfate ions inhibited the decomposition of H202, chlorides were found to be the more effective inhibitor of MTBE degradation. In the presence of sulfates, MTBE decomposition can be attributed to oxidation not only by hydroxyl radicals, but also likely by SO4*- species. In the presence of chloride ions, it is possible that the dichloride radical is formed, which is less reactive than OH*. In the system under investigation, t-butyl alcohol was found to be the major byproduct, followed by t-butyl formate and acetone. The degradation rates of all intermediates and their inhibition in the presence of inorganic ions are similar to those obtained for MTBE, although their distributions are related to the concentrations of inorganic salts added.


Subject(s)
Chlorides/chemistry , Hydrogen Peroxide/chemistry , Iron/chemistry , Methyl Ethers/chemistry , Sulfates/chemistry , Water Purification , Oxidation-Reduction
9.
J Hazard Mater ; 147(1-2): 497-502, 2007 Aug 17.
Article in English | MEDLINE | ID: mdl-17383092

ABSTRACT

The effect of selected inorganic anions on the effectiveness of the Fenton advanced oxidative treatment of waters contaminated with methyl t-butyl ether (MTBE) was examined. With respect to the chloride or phosphate ions used, inhibition of oxidation was clearly in evidence, whereas addition of sulfates or perchlorates influenced these rates to a much smaller extent. Anions suppress MTBE decomposition in the following sequence: ClO4-

Subject(s)
Environmental Restoration and Remediation/methods , Hydrogen Peroxide/chemistry , Ions , Iron/chemistry , Methyl Ethers/chemistry , Water Pollutants, Chemical , Chlorides , Oxidation-Reduction , Perchlorates , Phosphates , Water Purification/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...