Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Elife ; 92020 01 28.
Article in English | MEDLINE | ID: mdl-31989922

ABSTRACT

Several universal genomic traits affect trade-offs in the capacity, cost, and efficiency of the biochemical information processing that underpins metabolism and reproduction. We analyzed the role of these traits in mediating the responses of a planktonic microbial community to nutrient enrichment in an oligotrophic, phosphorus-deficient pond in Cuatro Ciénegas, Mexico. This is one of the first whole-ecosystem experiments to involve replicated metagenomic assessment. Mean bacterial genome size, GC content, total number of tRNA genes, total number of rRNA genes, and codon usage bias in ribosomal protein sequences were all higher in the fertilized treatment, as predicted on the basis of the assumption that oligotrophy favors lower information-processing costs whereas copiotrophy favors higher processing rates. Contrasting changes in trait variances also suggested differences between traits in mediating assembly under copiotrophic versus oligotrophic conditions. Trade-offs in information-processing traits are apparently sufficiently pronounced to play a role in community assembly because the major components of metabolism-information, energy, and nutrient requirements-are fine-tuned to an organism's growth and trophic strategy.


Subject(s)
Bacteria/genetics , Bacteria/metabolism , Ecosystem , Genome, Bacterial/genetics , Metagenome/genetics , Base Composition/genetics , Codon Usage/genetics , Fertilizers , Mexico , Plankton/genetics , Plankton/metabolism , Plankton/microbiology , Ponds/microbiology , Protein Biosynthesis/genetics , RNA, Bacterial/genetics , RNA, Bacterial/metabolism , RNA, Ribosomal/genetics , RNA, Ribosomal/metabolism , RNA, Transfer/genetics , RNA, Transfer/metabolism
2.
Front Microbiol ; 8: 949, 2017.
Article in English | MEDLINE | ID: mdl-28611750

ABSTRACT

Nutrient availability and ratios can play an important role in shaping microbial communities of freshwater ecosystems. The Cuatro Ciénegas Basin (CCB) in Mexico is a desert oasis where, perhaps paradoxically, high microbial diversity coincides with extreme oligotrophy. To better understand the effects of nutrients on microbial communities in CCB, a mesocosm experiment was implemented in a stoichiometrically imbalanced pond, Lagunita, which has an average TN:TP ratio of 122 (atomic). The experiment had four treatments, each with five spatial replicates - unamended controls and three fertilization treatments with different nitrogen:phosphorus (N:P) regimes (P only, N:P = 16 and N:P = 75 by atoms). In the water column, quantitative PCR of the 16S rRNA gene indicated that P enrichment alone favored proliferation of bacterial taxa with high rRNA gene copy number, consistent with a previously hypothesized but untested connection between rRNA gene copy number and P requirement. Bacterial and microbial eukaryotic community structure was investigated by pyrosequencing of 16S and 18S rRNA genes from the planktonic and surficial sediment samples. Nutrient enrichment shifted the composition of the planktonic community in a treatment-specific manner and promoted the growth of previously rare bacterial taxa at the expense of the more abundant, potentially endemic, taxa. The eukaryotic community was highly enriched with phototrophic populations in the fertilized treatment. The sediment microbial community exhibited high beta diversity among replicates within treatments, which obscured any changes due to fertilization. Overall, these results showed that nutrient stoichiometry can be an important factor in shaping microbial community structure.

3.
Astrobiology ; 12(7): 634-40, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22920513

ABSTRACT

We discuss the potential interactions among travel (dispersal and gene flow), bacterial "sex" (mainly as horizontal gene transfer), and food (metabolic plasticity and responses to nutrient availability) in shaping microbial communities. With regard to our work at a unique desert oasis, the Cuatro Ciénegas Basin in Coahuila, Mexico, we propose that diversification and low phosphorus availability, in combination with mechanisms for nutrient recycling and community cohesion, result in enhanced speciation through reproductive as well as geographic isolation. We also discuss these mechanisms in the broader sense of ecology and evolution. Of special relevance to astrobiology and central to evolutionary biology, we ask why there are so many species on Earth and provide a working hypothesis and a conceptual framework within which to consider the question. Key Words: Microbial ecology-Microbial mats-Evolution-Horizontal gene transfer-Metabolism.


Subject(s)
Bacteria/genetics , Bacteria/metabolism , Gene Flow/genetics , Gene Transfer, Horizontal/genetics , Genetic Speciation , Mexico
4.
Astrobiology ; 12(7): 641-7, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22920514

ABSTRACT

The Cuatro Ciénegas Basin (CCB) is a rare oasis in the Chihuahuan Desert in the state of Coahuila, Mexico. It has a biological endemism similar to that of the Galapagos Islands, and its spring-fed ecosystems have very low nutrient content (nitrogen or phosphorous) and are dominated by diverse microbialites. Thus, it has proven to be a distinctive opportunity for the field of astrobiology, as the CCB can be seen as a proxy for an earlier time in Earth's history, in particular the late Precambrian, the biological frontier when prokaryotic life yielded at least partial dominance to eukaryotes and multicellular life. It is a kind of ecological time machine that provides abundant opportunities for collaborative investigations by geochemists, geologists, ecologists, and population biologists in the study of the evolutionary processes that structured Earth-based life, especially in the microbial realm. The CCB is an object of investigation for the identification of biosignatures of past and present biota that can be used in our search for extraterrestrial life. In this review, we summarize CCB research efforts that began with microbial ecology and population biology projects and have since been expanded into broader efforts that involve biogeochemistry, comparative genomics, and assessments of biosignatures. We also propose that, in the future, the CCB is sanctioned as a "Precambrian Park" for astrobiology.


Subject(s)
Ecosystem , Exobiology , Wilderness , Biological Evolution , Exobiology/methods , Mexico , Models, Biological , Time Factors
5.
Astrobiology ; 12(7): 710-5, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22920519

ABSTRACT

The resiliency of prokaryotic life has provided colonization across the globe and in the recesses of Earth's most extreme environments. Horizontal gene transfer provides access to a global bank of genetic resources that creates diversity and allows real-time adaptive potential to the clonal prokaryotic world. We assess the likelihood that this Earth-based strategy could provide survival and adaptive potential, in the case of microbial stowaways off Earth.


Subject(s)
Bacteria/metabolism , Exobiology , Earth, Planet , Life , Mars
6.
Mob Genet Elements ; 2(6): 272-278, 2012 Nov 01.
Article in English | MEDLINE | ID: mdl-23481263

ABSTRACT

The resiliency and adaptive ability of microbial life in real time on Earth relies heavily upon horizontal gene transfer. Based on that knowledge, how likely is earth based microbial life to colonize extraterrestrial targets such as Mars? To address this question, we consider manned and unmanned space exploration, the resident microbiota that is likely to inhabit those vehicles, the adaptive potential of that microbiota in an extraterrestrial setting especially with regards to mobile genetic elements, and the likelihood that Mars like environments could initiate and sustain colonization.

7.
Methods Mol Biol ; 532: 13-27, 2009.
Article in English | MEDLINE | ID: mdl-19271177

ABSTRACT

This chapter defines the agents that provide for the movement of genetic material which fuels the adaptive potential of life on our planet. The chapter has been structured to be broadly comprehensive, arbitrarily categorizing the mobilome into four classes: (1) transposons, (2) plasmids, (3) bacteriophage, and (4) self-splicing molecular parasites.Our increasing understanding of the mobilome is as dynamic as the mobilome itself. With continuing discovery, it is clear that nature has not confined these genomic agents of change to neat categories, but rather the classification categories overlap and intertwine. Massive sequencing efforts and their published analyses are continuing to refine our understanding of the extent of the mobilome. This chapter provides a framework to describe our current understanding of the mobilome and a foundation on which appreciation of its impact on genome evolution can be understood.


Subject(s)
Gene Transfer, Horizontal , Bacteriophages/genetics , DNA Transposable Elements/genetics , Genome , Inteins , Interspersed Repetitive Sequences , Introns , Phylogeny , Plasmids/genetics
8.
Methods Mol Biol ; 532: 339-66, 2009.
Article in English | MEDLINE | ID: mdl-19271195

ABSTRACT

Comparison of 15 phylogenetically diverse cyanobacterial genomes identified an updated list of 183 signature genes that are widely found in cyanobacteria but absent in non-cyanobacterial species. These signature genes comprise the unique portion of the core cyanobacterial phenotype, and their absence from other lineages implies that if they arose by horizontal gene transfer (HGT), it likely occurred before the last shared cyanobacterial ancestor. A remaining issue is whether or not these signature genes would be relatively immune to HGT within the cyanobacterial lineage. Phylogenetic trees for each signature gene were constructed and compared to cyanobacterial groupings based on 16S rRNA sequences, with clear incongruence considered indicative of HGT. Approximately 18% of the signature genes exhibited such anomalies, indicating that the incidence of inter-lineage HGT has been significant. A preliminary analysis of intra-lineage transfer was conducted using four Synechococcus/Prochlorococcus species. In this case, it was found that 13% of the signature genes had likely been involved in within group HGT. In order to compare this level of likely HGT to other gene types, the analysis was extended to 1380 genes shared by the four Synechococcus/Prochlorococcus species. Successful HGT events appear to be most frequent among genes involved in photosynthesis/respiration and genes of unknown function, many of which are signature genes. This is consistent with the hypothesis that genes that most directly effect competition and adaptation of similar species in neighboring niches would be most usefully transferred. Such genes may be more easily integrated into a new genomic environment due to close similarities in regulatory circuits. In summary, signature genes are not immune from HGT and in fact may be favored candidates for HGT among closely related cyanobacterial strains.


Subject(s)
Cyanobacteria/genetics , Gene Transfer, Horizontal , Genes, Bacterial , Cyanobacteria/classification , Cyanobacteria/physiology , Models, Genetic , Phenotype , Phylogeny , RNA, Bacterial/genetics , RNA, Ribosomal, 16S/genetics
9.
Int J Syst Evol Microbiol ; 58(Pt 4): 919-23, 2008 Apr.
Article in English | MEDLINE | ID: mdl-18398195

ABSTRACT

A moderately halophilic, Gram-positive and rod-shaped bacterium, strain m4-4T, was isolated from a Chihuahuan desert lagoon in Cuatro Ciénegas, Coahuila, Mexico. Strain m4-4T was found to grow optimally at 30-37 degrees C, pH 7.0-8.0 and 5 % NaCl and to tolerate from 0.5 % to 10 % NaCl. It was shown to be aerobic. The genomic DNA G+C content was about 37 mol%. Strain m4-4T exhibited minimal or no growth on most sugars tested. Its major cellular fatty acids were C14 : 0, C16 : 0 and C18 : 1. Based on phylogenetic analysis of 16S rRNA and recA gene sequences, we observed that the closest relatives of the isolate are moderately halophilic Bacillus species, with 16S rRNA gene sequence similarity ranging from 96.6 to 97.4 % (Bacillus marisflavi, Bacillus aquimaris and Bacillus vietnamensis). Additionally, using genomic data it was determined that the type strain contains a total of nine rRNA operons with three slightly different sequences. On the basis of phenotypic and molecular properties, strain m4-4T represents a novel species within the genus Bacillus, for which the name Bacillus coahuilensis sp. nov. is proposed, with the type strain m4-4T (=NRRL B-41737T =CECT 7197T).


Subject(s)
Bacillus/classification , Bacillus/isolation & purification , Bacillus/genetics , Bacillus/metabolism , Base Composition , Base Sequence , Carbohydrate Metabolism , DNA Primers/genetics , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , Genes, Bacterial , Mexico , Molecular Sequence Data , Phylogeny , RNA, Bacterial/genetics , RNA, Ribosomal, 16S/genetics , Rec A Recombinases/genetics , Salinity , Species Specificity , Water Microbiology
10.
Mol Biol Evol ; 21(3): 541-54, 2004 Mar.
Article in English | MEDLINE | ID: mdl-14694078

ABSTRACT

In recent years, our understanding of biological nitrogen fixation has been bolstered by a diverse array of scientific techniques. Still, the origin and extant distribution of nitrogen fixation has been perplexing from a phylogenetic perspective, largely because of factors that confound molecular phylogeny such as sequence divergence, paralogy, and horizontal gene transfer. Here, we make use of 110 publicly available complete genome sequences to understand how the core components of nitrogenase, including NifH, NifD, NifK, NifE, and NifN proteins, have evolved. These genes are universal in nitrogen fixing organisms-typically found within highly conserved operons-and, overall, have remarkably congruent phylogenetic histories. Additional clues to the early origins of this system are available from two distinct clades of nitrogenase paralogs: a group composed of genes essential to photosynthetic pigment biosynthesis and a group of uncharacterized genes present in methanogens and in some photosynthetic bacteria. We explore the complex genetic history of the nitrogenase family, which is replete with gene duplication, recruitment, fusion, and horizontal gene transfer and discuss these events in light of the hypothesized presence of nitrogenase in the last common ancestor of modern organisms, as well as the additional possibility that nitrogen fixation might have evolved later, perhaps in methanogenic archaea, and was subsequently transferred into the bacterial domain.


Subject(s)
Evolution, Molecular , Genes, Bacterial , Nitrogen Fixation/genetics , Amino Acid Motifs , Bacteria/genetics , Gene Transfer, Horizontal , Models, Genetic , Multigene Family , Nitrogenase/genetics , Phylogeny
11.
Photosynth Res ; 75(3): 211-21, 2003.
Article in English | MEDLINE | ID: mdl-16228602

ABSTRACT

A comparison of 8 cyanobacterial genomes reveals that there are 181 shared genes that do not have obvious orthologs in other bacteria. These signature genes define aspects of the genotype that are uniquely cyanobacterial. Approximately 25% of these genes have been associated with some function. These signature genes may or may not be involved in photosynthesis but likely they will be in many cases. In addition, several examples of widely conserved gene order involving two or more signature genes were observed. This suggests there may be regulatory processes that have been preserved throughout the long history of the cyanobacterial phenotype. The results presented here will be especially useful because they identify which of the many genes of unassigned function are likely to be of the greatest interest.

12.
Science ; 296(5570): 1066-8, 2002 May 10.
Article in English | MEDLINE | ID: mdl-12004117

ABSTRACT

Harvesting light to produce energy and oxygen (photosynthesis) is the signature of all land plants. This ability was co-opted from a precocious and ancient form of life known as cyanobacteria. Today these bacteria, as well as microscopic algae, supply oxygen to the atmosphere and churn out fixed nitrogen in Earth's vast oceans. Microorganisms may also have played a major role in atmosphere evolution before the rise of oxygen. Under the more dim light of a young sun cooler than today's, certain groups of anaerobic bacteria may have been pumping out large amounts of methane, thereby keeping the early climate warm and inviting. The evolution of Earth's atmosphere is linked tightly to the evolution of its biota.


Subject(s)
Atmosphere , Cyanobacteria/physiology , Eukaryota/physiology , Euryarchaeota/physiology , Evolution, Planetary , Biological Evolution , Earth, Planet , Methane/metabolism , Nitrogen/metabolism , Nitrogen Fixation , Oxygen/metabolism , Photosynthesis , Symbiosis , Water Microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...