Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Rev Sci Instrum ; 86(12): 123107, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26724006

ABSTRACT

In this paper, we present the HELIOS (High Energy Laser Induced Overtone Source) laboratory, an in-house high-order harmonic generation facility which generates extreme ultraviolet (XUV) photon pulses in the range of 15-70 eV with monochromatized XUV pulse lengths below 35 fs. HELIOS is a source for time-resolved pump-probe/two-color spectroscopy in the sub-50 fs range, which can be operated at 5 kHz or 10 kHz. An optical parametric amplifier is available for pump-probe experiments with wavelengths ranging from 240 nm to 20,000 nm. The produced XUV radiation is monochromatized by a grating in the so-called off-plane mount. Together with overall design parameters, first monochromatized spectra are shown with an intensity of 2 ⋅ 10(10) photons/s (at 5 kHz) in the 29th harmonic, after the monochromator. The XUV pulse duration is measured to be <25 fs after monochromatization.

2.
J Chem Phys ; 128(18): 184709, 2008 May 14.
Article in English | MEDLINE | ID: mdl-18532838

ABSTRACT

The molecular and electronic surface structure of a triarylamine based hole-conductor (HC) molecule evaporated onto rutile TiO2(110) single crystal is investigated by means of synchrotron light based photoelectron spectroscopy and x-ray absorption spectroscopy in combination with calculations based on density functional theory. Different amounts of the HC molecule was evaporated spanning the monolayer to multilayer region. The molecular surface structure is investigated and the results indicate that no specific covalent chemical bonding is formed and that the plane formed by the different nitrogens in the HC molecules has a rather small angle versus the TiO2 substrate surface plane. Some molecular ordering also persists in the multilayer region. The experimental core level spectra, valence level spectra, and the N 1s x-ray absorption spectroscopy spectra are well modeled by calculations on an individual molecule. Interestingly, the formation of the TiO2HC interface results in significant binding energy shifts in core levels and valence levels shifting all peaks of a the HC material to the same extent. Smaller shifts were also observed in the substrate core level peaks. The shift is discussed in terms of nanoscale energy level bending and final state hole screening. With respect to electronic applications, specifically in a solid state dye-sensitized solar cell, it is argued that the observed energy level alignment at the TiO2HC interface can act as a hole trap.

3.
J Chem Phys ; 126(24): 244303, 2007 Jun 28.
Article in English | MEDLINE | ID: mdl-17614545

ABSTRACT

The frontier electronic structures of Ru(tcterpy)(NCS)3 [black dye (BD)] and Ru(dcbpy)2(NCS)(2) (N719) have been investigated by photoelectron spectroscopy (PES), X-ray absorption spectroscopy (XAS) and resonant photoelectron spectroscopy (RPES). N1s XAS has been used to probe the nitrogen contribution in the unoccupied density of states, and PES, together with RPES over the N1s edge, has been used to delineate the character of the occupied density of states. The experimental findings of the frontier electron structure are compared to calculations of the partial density of states for the nitrogens in the different ligands (NCS and terpyridine/bipyridine) and for Ru4d. The result indicates large similarities between the two complexes. Specifically, the valence level spectra show two well separated structures at low binding energy. The experimental results indicate that the outermost structure in the valence region largely has a Ru4d character but with a substantial character also from the NCS ligand. Interestingly, the second lowest structure also has a significant Ru4d character mixed into the structure otherwise dominated by NCS. Comparing the two complexes the BD valence structures lowest in binding energy contains a large contribution from the NCS ligands but almost no contribution from the terpyridine ligands, while for N719 also some contribution from the bipyridine ligands is mixed into the energy levels.

4.
Colloids Surf B Biointerfaces ; 49(1): 1-7, 2006 Apr 15.
Article in English | MEDLINE | ID: mdl-16567083

ABSTRACT

The durability and functionality of a heparin coating on artificial heart valve leaflets were evaluated with X-ray photoelectron spectroscopy (XPS) and by the coatings' capacity to bind antithrombin. Current methods for accelerated life-time testing are based on exposing leaflets to water solutions. In this paper a method is explored, in which heart valve leaflets were exposed to a continuous high shear rate (4 L/min) of human citrated plasma. It was found that the heparin coating was stable and wear resistant enough to still be present after 3 weeks and to have about the same antithrombin uptake as coatings not exposed to circulating plasma. It was, however, partly destroyed by the test as found using XPS. We suggest that heparin chains from the upper layer of heparin have been torn off from the carrier chain, in combination with loss of heparin conjugate and plasma deposition in patches. This study showed that XPS provides additional information to biological measurements such as antithrombin uptake. XPS is therefore a valuable technique not only to characterize biomaterials but also to evaluate the effect of a performance test.


Subject(s)
Antithrombins/chemistry , Antithrombins/metabolism , Biocompatible Materials/chemistry , Heart Valves/chemistry , Heart Valves/metabolism , Heparin/chemistry , Carbohydrate Conformation , Carbohydrate Sequence , Electrons , Humans , Materials Testing , Molecular Sequence Data , Sensitivity and Specificity , Spectrum Analysis , Surface Properties , X-Rays
5.
J Chem Phys ; 122(21): 214723, 2005 Jun 01.
Article in English | MEDLINE | ID: mdl-15974778

ABSTRACT

The electronic structure of a vapor-sublimated thin film of metal-free phthalocyanine (H2Pc) is studied experimentally and theoretically. An atom-specific picture of the occupied and unoccupied electronic states is obtained using x-ray-absorption spectroscopy (XAS), core- and valence-level x-ray photoelectron spectroscopy (XPS), and density-functional theory (DFT) calculations. The DFT calculations allow for an identification of the contributions from individual nitrogen atoms to the experimental N1s XAS and valence XPS spectra. This comprehensive study of metal-free phthalocyanine is relevant for the application of such molecules in molecular electronics and provides a solid foundation for identifying modifications in the electronic structure induced by various substituent groups.

6.
J Phys Chem B ; 109(47): 22256-63, 2005 Dec 01.
Article in English | MEDLINE | ID: mdl-16853898

ABSTRACT

The element specificity of photoelectron spectroscopy (PES) has been used to compare the electronic and molecular structure of the dyes Ru(tcterpy)(NCS)3 (BD) and Ru(dcbpy)2(NCS)2 adsorbed from solution onto nanostructured TiO2. Ru(dcbpy)2(NCS)2 was investigated in its acid (N3) and in its 2-fold deprotonated form (N719) having tetrabutylammonium (TBA+) as counterions. A comparison of the O1s spectra for the dyes indicates that the interactions through the carboxylate groups with the TiO2 surface are very similar for the dyes. However, we observe that some of the dye molecules also interact through the NCS groups when adsorbed at the TiO2 surface. Comparing the N719 and the N3 molecule, the fraction of NCS groups interacting through the sulfur atoms is smaller for N719 than for N3. We also note that the counterion TBA+ is coadsorbed with the N719 and BD molecules although the amount was smaller than expected from the molecular formulas. Comparing the valence levels for the dyes adsorbed on TiO2, the position of the highest occupied electronic energy level is similar for N3 and N719, while that for BD is lower by 0.25 eV relative to that of the other complexes.


Subject(s)
Nanostructures/chemistry , Organometallic Compounds/chemistry , Ruthenium/chemistry , Titanium/chemistry , Adsorption , Electrons , Molecular Structure , Photochemistry , Sensitivity and Specificity , Solutions/chemistry , Spectrum Analysis/methods , Surface Properties
7.
J Chem Phys ; 120(23): 11224-32, 2004 Jun 15.
Article in English | MEDLINE | ID: mdl-15268152

ABSTRACT

The interfaces of the nanostructured dye-sensitized solid heterojunction TiO(2)/Ru-dye/CuI have been studied using photoelectron spectroscopy of core and valence levels, x-ray absorption spectroscopy and atomic force microscopy. A nanostructured anatase TiO(2) film sensitized with RuL(2)(NCS)(2) [cis-bis(4,4(')-dicarboxy-2,2(')-bipyridine)-bis(isothio-cyanato)-ruthenium(II)] was prepared in a controlled way using a novel combined in-situ and ex-situ (Ar atmosphere) method. Onto this film CuI was deposited in-situ. The formation of the dye-CuI interface and the changes brought upon the dye-TiO(2) interface could be monitored in a stepwise fashion. A direct interaction between the dye NCS groups and the CuI is evident in the core level photoelectron spectra. Concerning the energy matching of the valence electronic levels, the photoelectron spectra indicate that the dye HOMO overlaps in energy with the Cu 3d-I 5p hydrid states. The CuI grow in the form of particles, which at the initial stages displace the dye molecules causing dye-TiO(2) bond breaking. Consequently, the very efficient charge injection channel provided by the dye-TiO(2) carboxylic bonding is directly affected for a substantial part of the dye molecules. This may be of importance for the functional properties of such a heterojunction.

8.
Biomaterials ; 24(23): 4153-9, 2003 Oct.
Article in English | MEDLINE | ID: mdl-12853245

ABSTRACT

In order to gain insight into the molecular structure of a new heparin surface (Corline heparin surface, CHS), quartz crystal microbalance dissipation (QCM-D) and photoelectron spectroscopy (PES) were used. Two surfaces, with different surface thickness and surface concentration of heparin, were compared. QCM-D measurements provided information on the thickness of the two different heparin surfaces and confirmed that the process of formation of the two layers were virtually identical. PES showed that the thicker coating resulted in complete coverage of the substrate, whereas with the thinner coating Fe signals originating from the stainless steel substrate could be detected. Information of the molecular surface structure of the heparin coatings could be derived from the ratios at different photon energies between S2p signals from sulfonate groups in heparin and disulfide groups originating from a cross-linking unit in the heparin conjugate.


Subject(s)
Biophysics/methods , Biosensing Techniques/methods , Heparin/chemistry , Carbohydrate Sequence , Cross-Linking Reagents/pharmacology , Disulfides , Electrons , Microchemistry/methods , Models, Chemical , Molecular Sequence Data , Photons , Quartz , Surface Plasmon Resonance , Time Factors
9.
Phys Rev Lett ; 89(13): 137402, 2002 Sep 23.
Article in English | MEDLINE | ID: mdl-12225062

ABSTRACT

We use x-ray emission spectroscopy to examine the influence of the intermolecular interaction on the local electronic structure of liquid water. By comparing x-ray emission spectra of the water molecule and liquid water, we find a strong involvement of the a(1)-symmetry valence-orbital in the hydrogen bonding. The local electronic structure of water molecules, where one hydrogen bond is broken at the hydrogen site, is separately determined. Our results provide an illustration of the important potential of x-ray emission spectroscopy for elucidating basic features of liquids.

SELECTION OF CITATIONS
SEARCH DETAIL
...