Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
2.
Breast Cancer Res Treat ; 171(3): 637-648, 2018 Oct.
Article in English | MEDLINE | ID: mdl-29938395

ABSTRACT

PURPOSE: HER2 + breast cancer (BC) is an aggressive subtype with high rates of brain metastases (BCBM). Two-thirds of HER2 + BCBM demonstrate activation of the PI3K/mTOR pathway driving resistance to anti-HER2 therapy. This phase II study evaluated everolimus (E), a brain-permeable mTOR inhibitor, trastuzumab (T), and vinorelbine (V) in patients with HER2 + BCBM. PATIENTS AND METHODS: Eligible patients had progressive HER2 + BCBM. The primary endpoint was intracranial response rate (RR); secondary objectives were CNS clinical benefit rate (CBR), extracranial RR, time to progression (TTP), overall survival (OS), and targeted sequencing of tumors from enrolled patients. A two-stage design distinguished intracranial RR of 5% versus 20%. RESULTS: 32 patients were evaluable for toxicity, 26 for efficacy. Intracranial RR was 4% (1 PR). CNS CBR at 6 mos was 27%; at 3 mos 65%. Median intracranial TTP was 3.9 mos (95% CI 2.2-5). OS was 12.2 mos (95% CI 0.6-20.2). Grade 3-4 toxicities included neutropenia (41%), anemia (16%), and stomatitis (16%). Mutations in TP53 and PIK3CA were common in BCBM. Mutations in the PI3K/mTOR pathway were not associated with response. ERBB2 amplification was higher in BCBM compared to primary BC; ERBB2 amplification in the primary BC trended toward worse OS. CONCLUSION: While intracranial RR to ETV was low in HER2 + BCBM patients, one-third achieved CNS CBR; TTP/OS was similar to historical control. No new toxicity signals were observed. Further analysis of the genomic underpinnings of BCBM to identify tractable prognostic and/or predictive biomarkers is warranted. CLINICAL TRIAL: (NCT01305941).


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Brain Neoplasms/drug therapy , Brain Neoplasms/secondary , Breast Neoplasms/pathology , Adult , Aged , Biomarkers, Tumor , Brain Neoplasms/diagnosis , Brain Neoplasms/mortality , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , DNA Copy Number Variations , Disease Progression , Everolimus/administration & dosage , Female , Humans , Magnetic Resonance Imaging , Middle Aged , Molecular Targeted Therapy , Mutation , Neoplasm Metastasis , Receptor, ErbB-2/genetics , Receptor, ErbB-2/metabolism , Survival Analysis , Trastuzumab/administration & dosage , Treatment Outcome , Vinorelbine/administration & dosage
3.
J Clin Invest ; 128(4): 1371-1383, 2018 04 02.
Article in English | MEDLINE | ID: mdl-29480819

ABSTRACT

Breast cancer metastasis remains a clinical challenge, even within a single patient across multiple sites of the disease. Genome-wide comparisons of both the DNA and gene expression of primary tumors and metastases in multiple patients could help elucidate the underlying mechanisms that cause breast cancer metastasis. To address this issue, we performed DNA exome and RNA sequencing of matched primary tumors and multiple metastases from 16 patients, totaling 83 distinct specimens. We identified tumor-specific drivers by integrating known protein-protein network information with RNA expression and somatic DNA alterations and found that genetic drivers were predominantly established in the primary tumor and maintained through metastatic spreading. In addition, our analyses revealed that most genetic drivers were DNA copy number changes, the TP53 mutation was a recurrent founding mutation regardless of subtype, and that multiclonal seeding of metastases was frequent and occurred in multiple subtypes. Genetic drivers unique to metastasis were identified as somatic mutations in the estrogen and androgen receptor genes. These results highlight the complexity of metastatic spreading, be it monoclonal or multiclonal, and suggest that most metastatic drivers are established in the primary tumor, despite the substantial heterogeneity seen in the metastases.


Subject(s)
Breast Neoplasms , DNA Copy Number Variations , DNA, Neoplasm , Gene Expression Regulation, Neoplastic , RNA, Neoplasm , Sequence Analysis, DNA , Sequence Analysis, RNA , Adult , Aged , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , DNA, Neoplasm/genetics , DNA, Neoplasm/metabolism , Humans , Male , Middle Aged , Mutation , Neoplasm Metastasis , RNA, Neoplasm/biosynthesis , RNA, Neoplasm/genetics , Tumor Suppressor Protein p53/biosynthesis , Tumor Suppressor Protein p53/genetics
4.
Sci Rep ; 8(1): 1180, 2018 01 19.
Article in English | MEDLINE | ID: mdl-29352201

ABSTRACT

Glioma is a unique neoplastic disease that develops exclusively in the central nervous system (CNS) and rarely metastasizes to other tissues. This feature strongly implicates the tumor-host CNS microenvironment in gliomagenesis and tumor progression. We investigated the differences and similarities in glioma biology as conveyed by transcriptomic patterns across four mammalian hosts: rats, mice, dogs, and humans. Given the inherent intra-tumoral molecular heterogeneity of human glioma, we focused this study on tumors with upregulation of the platelet-derived growth factor signaling axis, a common and early alteration in human gliomagenesis. The results reveal core neoplastic alterations in mammalian glioma, as well as unique contributions of the tumor host to neoplastic processes. Notable differences were observed in gene expression patterns as well as related biological pathways and cell populations known to mediate key elements of glioma biology, including angiogenesis, immune evasion, and brain invasion. These data provide new insights regarding mammalian models of human glioma, and how these insights and models relate to our current understanding of the human disease.


Subject(s)
Brain Neoplasms/genetics , Cell Transformation, Neoplastic/genetics , Gene Expression Profiling , Glioma/genetics , Transcriptome , Animals , Brain Neoplasms/pathology , Computational Biology/methods , Dogs , Gene Expression Regulation, Neoplastic , Glioma/pathology , Mice , Rats , Reproducibility of Results , Species Specificity
6.
Neuro Oncol ; 19(11): 1481-1493, 2017 Oct 19.
Article in English | MEDLINE | ID: mdl-28486691

ABSTRACT

BACKGROUND: Triple-negative breast cancer (TNBC), lacking expression of hormone and human epidermal growth factor receptor 2 receptors, is an aggressive subtype that frequently metastasizes to the brain and has no FDA-approved systemic therapies. Previous literature demonstrates mitogen-activated protein kinase kinase (MEK) pathway activation in TNBC brain metastases. Thus, we aimed to discover rational combinatorial therapies with MEK inhibition, hypothesizing that co-inhibition using clinically available brain-penetrant inhibitors would improve survival in preclinical models of TNBC brain metastases. METHODS: Using human-derived TNBC cell lines, synthetic lethal small interfering RNA kinase screens were evaluated with brain-penetrant inhibitors against MEK1/2 (selumetinib, AZD6244) or phosphatidylinositol-3 kinase (PI3K; buparlisib, BKM120). Mice bearing intracranial TNBC tumors (SUM149, MDA-MB-231Br, MDA-MB-468, or MDA-MB-436) were treated with MEK, PI3K, or platelet derived growth factor receptor (PDGFR; pazopanib) inhibitors alone or in combination. Tumors were analyzed by western blot and multiplexed kinase inhibitor beads/mass spectrometry to assess treatment effects. RESULTS: Screens identified MEK+PI3K and MEK+PDGFR inhibitors as tractable, rational combinations. Dual treatment of selumetinib with buparlisib or pazopanib was synergistic in TNBC cells in vitro. Both combinations improved survival in intracranial SUM149 and MDA-MB-231Br, but not MDA-MB-468 or MDA-MB-436. Treatments decreased mitogen-activated protein kinase (MAPK) and PI3K (Akt) signaling in sensitive (SUM149 and 231Br) but not resistant models (MDA-MB-468). Exploratory analysis of kinome reprogramming in SUM149 intracranial tumors after MEK ± PI3K inhibition demonstrates extensive kinome changes with treatment, especially in MAPK pathway members. CONCLUSIONS: Results demonstrate that rational combinations of the clinically available inhibitors selumetinib with buparlisib or pazopanib may prove to be promising therapeutic strategies for the treatment of some TNBC brain metastases. Additionally, effective combination treatments cause widespread alterations in kinase pathways, including targetable potential resistance drivers.


Subject(s)
Brain Neoplasms/drug therapy , MAP Kinase Kinase 1/antagonists & inhibitors , MAP Kinase Kinase 2/antagonists & inhibitors , Phosphoinositide-3 Kinase Inhibitors , Protein Kinase Inhibitors/pharmacology , Receptor, Platelet-Derived Growth Factor alpha/antagonists & inhibitors , Receptor, Platelet-Derived Growth Factor beta/antagonists & inhibitors , Triple Negative Breast Neoplasms/drug therapy , Animals , Apoptosis/drug effects , Brain Neoplasms/metabolism , Brain Neoplasms/secondary , Cell Proliferation/drug effects , Drug Synergism , Female , Humans , Mice , Phosphorylation , Signal Transduction/drug effects , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/pathology , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
7.
Sci Transl Med ; 9(391)2017 05 24.
Article in English | MEDLINE | ID: mdl-28539475

ABSTRACT

Although targeted therapies are often effective systemically, they fail to adequately control brain metastases. In preclinical models of breast cancer that faithfully recapitulate the disparate clinical responses in these microenvironments, we observed that brain metastases evade phosphatidylinositide 3-kinase (PI3K) inhibition despite drug accumulation in the brain lesions. In comparison to extracranial disease, we observed increased HER3 expression and phosphorylation in brain lesions. HER3 blockade overcame the resistance of HER2-amplified and/or PIK3CA-mutant breast cancer brain metastases to PI3K inhibitors, resulting in marked tumor growth delay and improvement in mouse survival. These data provide a mechanistic basis for therapeutic resistance in the brain microenvironment and identify translatable treatment strategies for HER2-amplified and/or PIK3CA-mutant breast cancer brain metastases.


Subject(s)
Brain Neoplasms/metabolism , Breast Neoplasms/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Receptor, ErbB-3/metabolism , Animals , Antineoplastic Agents/therapeutic use , Brain Neoplasms/drug therapy , Brain Neoplasms/secondary , Breast Neoplasms/complications , Breast Neoplasms/drug therapy , Female , Mice , Phosphoinositide-3 Kinase Inhibitors , Protein Kinase Inhibitors/therapeutic use , Receptor, ErbB-3/antagonists & inhibitors , Receptor, ErbB-3/genetics
8.
Neuro Oncol ; 19(11): 1469-1480, 2017 Oct 19.
Article in English | MEDLINE | ID: mdl-28379424

ABSTRACT

BACKGROUND: Glioblastoma (GBM) is the most common and aggressive primary brain tumor. Prognosis remains poor despite multimodal therapy. Developing alternative treatments is essential. Drugs targeting kinases within the phosphoinositide 3-kinase (PI3K) and mitogen-activated protein kinase (MAPK) effectors of receptor tyrosine kinase (RTK) signaling represent promising candidates. METHODS: We previously developed a non-germline genetically engineered mouse model of GBM in which PI3K and MAPK are activated via Pten deletion and KrasG12D in immortalized astrocytes. Using this model, we examined the influence of drug potency on target inhibition, alternate pathway activation, efficacy, and synergism of single agent and combination therapy with inhibitors of these 2 pathways. Efficacy was then examined in GBM patient-derived xenografts (PDX) in vitro and in vivo. RESULTS: PI3K and mitogen-activated protein kinase kinase (MEK) inhibitor potency was directly associated with target inhibition, alternate RTK effector activation, and efficacy in mutant murine astrocytes in vitro. The kinomes of GBM PDX and tumor samples were heterogeneous, with a subset of the latter harboring MAPK hyperactivation. Dual PI3K/MEK inhibitor treatment overcame alternate effector activation, was synergistic in vitro, and was more effective than single agent therapy in subcutaneous murine allografts. However, efficacy in orthotopic allografts was minimal. This was likely due to dose-limiting toxicity and incomplete target inhibition. CONCLUSION: Drug potency influences PI3K/MEK inhibitor-induced target inhibition, adaptive kinome reprogramming, efficacy, and synergy. Our findings suggest that combination therapies with highly potent, brain-penetrant kinase inhibitors will be required to improve patient outcomes.


Subject(s)
Brain Neoplasms/drug therapy , Drug Resistance, Neoplasm , Glioblastoma/drug therapy , Mitogen-Activated Protein Kinases/antagonists & inhibitors , Phosphoinositide-3 Kinase Inhibitors , Protein Kinase Inhibitors/pharmacology , Animals , Apoptosis/drug effects , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Cell Proliferation/drug effects , Drug Synergism , Glioblastoma/metabolism , Glioblastoma/pathology , Humans , Mice , Phosphorylation , Signal Transduction/drug effects , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
9.
Genome Biol ; 18(1): 66, 2017 04 08.
Article in English | MEDLINE | ID: mdl-28390427

ABSTRACT

Changes in the quantity of genetic material, known as somatic copy number alterations (CNAs), can drive tumorigenesis. Many methods exist for assessing CNAs using microarrays, but considerable technical issues limit current CNA calling based upon DNA sequencing. We present SynthEx, a novel tool for detecting CNAs from whole exome and genome sequencing. SynthEx utilizes a "synthetic-normal" strategy to overcome technical and financial issues. In terms of accuracy and precision, SynthEx is highly comparable to array-based methods and outperforms sequencing-based CNA detection tools. SynthEx robustly identifies CNAs using sequencing data without the additional costs associated with matched normal specimens.


Subject(s)
Computational Biology/methods , DNA Copy Number Variations , Genetic Heterogeneity , Neoplasms/genetics , Sequence Analysis, DNA , Software , Cluster Analysis , Exome , Exons , Gene Dosage , Gene Expression Profiling/methods , High-Throughput Nucleotide Sequencing , Humans , Reproducibility of Results , Sequence Analysis, DNA/methods
10.
Neuro Oncol ; 19(9): 1237-1247, 2017 Sep 01.
Article in English | MEDLINE | ID: mdl-28398584

ABSTRACT

BACKGROUND: Gliomas are diverse neoplasms with multiple molecular subtypes. How tumor-initiating mutations relate to molecular subtypes as these tumors evolve during malignant progression remains unclear. METHODS: We used genetically engineered mouse models, histopathology, genetic lineage tracing, expression profiling, and copy number analyses to examine how genomic tumor diversity evolves during the course of malignant progression from low- to high-grade disease. RESULTS: Knockout of all 3 retinoblastoma (Rb) family proteins was required to initiate low-grade tumors in adult mouse astrocytes. Mutations activating mitogen-activated protein kinase signaling, specifically KrasG12D, potentiated Rb-mediated tumorigenesis. Low-grade tumors showed mutant Kras-specific transcriptome profiles but lacked copy number mutations. These tumors stochastically progressed to high-grade, in part through acquisition of copy number mutations. High-grade tumor transcriptomes were heterogeneous and consisted of 3 subtypes that mimicked human mesenchymal, proneural, and neural glioblastomas. Subtypes were confirmed in validation sets of high-grade mouse tumors initiated by different driver mutations as well as human patient-derived xenograft models and glioblastoma tumors. CONCLUSION: These results suggest that oncogenic driver mutations influence the genomic profiles of low-grade tumors and that these, as well as progression-acquired mutations, contribute strongly to the genomic heterogeneity across high-grade tumors.


Subject(s)
Brain Neoplasms/genetics , Brain Neoplasms/pathology , Glioblastoma/genetics , Glioblastoma/pathology , Glioma/genetics , Glioma/pathology , Animals , Cell Transformation, Neoplastic/genetics , Disease Progression , Genomics/methods , Mice , Mice, Inbred C57BL , Mice, Mutant Strains , Mutation
11.
J Clin Invest ; 127(2): 593-607, 2017 Feb 01.
Article in English | MEDLINE | ID: mdl-28094771

ABSTRACT

Orphan GPCRs provide an opportunity to identify potential pharmacological targets, yet their expression patterns and physiological functions remain challenging to elucidate. Here, we have used a genetically engineered knockin reporter mouse to map the expression pattern of the Gpr182 during development and adulthood. We observed that Gpr182 is expressed at the crypt base throughout the small intestine, where it is enriched in crypt base columnar stem cells, one of the most active stem cell populations in the body. Gpr182 knockdown had no effect on homeostatic intestinal proliferation in vivo, but led to marked increases in proliferation during intestinal regeneration following irradiation-induced injury. In the ApcMin mouse model, which forms spontaneous intestinal adenomas, reductions in Gpr182 led to more adenomas and decreased survival. Loss of Gpr182 enhanced organoid growth efficiency ex vivo in an EGF-dependent manner. Gpr182 reduction led to increased activation of ERK1/2 in basal and challenge models, demonstrating a potential role for this orphan GPCR in regulating the proliferative capacity of the intestine. Importantly, GPR182 expression was profoundly reduced in numerous human carcinomas, including colon adenocarcinoma. Together, these results implicate Gpr182 as a negative regulator of intestinal MAPK signaling-induced proliferation, particularly during regeneration and adenoma formation.


Subject(s)
Adenomatous Polyposis Coli/metabolism , Cell Proliferation , Intestine, Small/metabolism , MAP Kinase Signaling System , Mitogen-Activated Protein Kinase 3/metabolism , Neoplasms, Experimental/metabolism , Receptors, G-Protein-Coupled/metabolism , Adenomatous Polyposis Coli/genetics , Adenomatous Polyposis Coli/pathology , Adenomatous Polyposis Coli Protein/genetics , Adenomatous Polyposis Coli Protein/metabolism , Animals , Gene Knockdown Techniques , Intestine, Small/pathology , Mice , Mice, Knockout , Mitogen-Activated Protein Kinase 3/genetics , Neoplasms, Experimental/genetics , Neoplasms, Experimental/pathology , Receptors, G-Protein-Coupled/genetics
13.
PLoS Med ; 13(12): e1002174, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27923045

ABSTRACT

BACKGROUND: Metastasis is the main cause of cancer patient deaths and remains a poorly characterized process. It is still unclear when in tumor progression the ability to metastasize arises and whether this ability is inherent to the primary tumor or is acquired well after primary tumor formation. Next-generation sequencing and analytical methods to define clonal heterogeneity provide a means for identifying genetic events and the temporal relationships between these events in the primary and metastatic tumors within an individual. METHODS AND FINDINGS: We performed DNA whole genome and mRNA sequencing on two primary tumors, each with either four or five distinct tissue site-specific metastases, from two individuals with triple-negative/basal-like breast cancers. As evidenced by their case histories, each patient had an aggressive disease course with abbreviated survival. In each patient, the overall gene expression signatures, DNA copy number patterns, and somatic mutation patterns were highly similar across each primary tumor and its associated metastases. Almost every mutation found in the primary was found in a metastasis (for the two patients, 52/54 and 75/75). Many of these mutations were found in every tumor (11/54 and 65/75, respectively). In addition, each metastasis had fewer metastatic-specific events and shared at least 50% of its somatic mutation repertoire with the primary tumor, and all samples from each patient grouped together by gene expression clustering analysis. TP53 was the only mutated gene in common between both patients and was present in every tumor in this study. Strikingly, each metastasis resulted from multiclonal seeding instead of from a single cell of origin, and few of the new mutations, present only in the metastases, were expressed in mRNAs. Because of the clinical differences between these two patients and the small sample size of our study, the generalizability of these findings will need to be further examined in larger cohorts of patients. CONCLUSIONS: Our findings suggest that multiclonal seeding may be common amongst basal-like breast cancers. In these two patients, mutations and DNA copy number changes in the primary tumors appear to have had a biologic impact on metastatic potential, whereas mutations arising in the metastases were much more likely to be passengers.


Subject(s)
Breast Neoplasms/genetics , Disease Progression , Neoplasms, Basal Cell/genetics , Aged , Breast Neoplasms/secondary , Female , Genomics , Humans , Middle Aged , Mutation , Neoplasms, Basal Cell/secondary , Retrospective Studies
14.
PLoS One ; 10(6): e0129280, 2015.
Article in English | MEDLINE | ID: mdl-26076459

ABSTRACT

The recent FDA approval of the MiSeqDx platform provides a unique opportunity to develop targeted next generation sequencing (NGS) panels for human disease, including cancer. We have developed a scalable, targeted panel-based assay termed UNCseq, which involves a NGS panel of over 200 cancer-associated genes and a standardized downstream bioinformatics pipeline for detection of single nucleotide variations (SNV) as well as small insertions and deletions (indel). In addition, we developed a novel algorithm, NGScopy, designed for samples with sparse sequencing coverage to detect large-scale copy number variations (CNV), similar to human SNP Array 6.0 as well as small-scale intragenic CNV. Overall, we applied this assay to 100 snap-frozen lung cancer specimens lacking same-patient germline DNA (07-0120 tissue cohort) and validated our results against Sanger sequencing, SNP Array, and our recently published integrated DNA-seq/RNA-seq assay, UNCqeR, where RNA-seq of same-patient tumor specimens confirmed SNV detected by DNA-seq, if RNA-seq coverage depth was adequate. In addition, we applied the UNCseq assay on an independent lung cancer tumor tissue collection with available same-patient germline DNA (11-1115 tissue cohort) and confirmed mutations using assays performed in a CLIA-certified laboratory. We conclude that UNCseq can identify SNV, indel, and CNV in tumor specimens lacking germline DNA in a cost-efficient fashion.


Subject(s)
Carcinoma, Non-Small-Cell Lung/genetics , Genetic Variation , Genomics , Lung Neoplasms/genetics , Adult , Aged , Aged, 80 and over , Carcinoma, Non-Small-Cell Lung/pathology , Computational Biology , DNA Copy Number Variations , Female , Genetic Association Studies , Genomics/methods , High-Throughput Nucleotide Sequencing , Humans , Lung Neoplasms/pathology , Male , Middle Aged , Mutation , Neoplasm Grading , Neoplasm Staging , Proto-Oncogene Proteins p21(ras)/genetics , Reproducibility of Results
15.
Mol Cancer Ther ; 14(4): 920-30, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25824335

ABSTRACT

Patients with breast cancer brain metastases have extremely limited survival and no approved systemic therapeutics. Triple-negative breast cancer (TNBC) commonly metastasizes to the brain and predicts poor prognosis. TNBC frequently harbors BRCA mutations translating to platinum sensitivity potentially augmented by additional suppression of DNA repair mechanisms through PARP inhibition. We evaluated brain penetrance and efficacy of carboplatin ± the PARP inhibitor ABT888, and investigated gene-expression changes in murine intracranial TNBC models stratified by BRCA and molecular subtype status. Athymic mice were inoculated intracerebrally with BRCA-mutant: SUM149 (basal), MDA-MB-436 (claudin-low); or BRCA-wild-type (wt): MDA-MB-468 (basal), MDA-MB-231BR (claudin-low). TNBC cells were treated with PBS control [intraperitoneal (IP), weekly], carboplatin (50 mg/kg/wk, IP), ABT888 (25 mg/kg/d, oral gavage), or their combination. DNA damage (γ-H2AX), apoptosis (cleaved caspase-3, cC3), and gene expression were measured in intracranial tumors. Carboplatin ± ABT888 significantly improved survival in BRCA-mutant intracranial models compared with control, but did not improve survival in BRCA-wt intracranial models. Carboplatin + ABT888 revealed a modest survival advantage versus carboplatin in BRCA-mutant models. ABT888 yielded a marginal survival benefit in the MDA-MB-436, but not in the SUM149 model. BRCA-mutant SUM149 expression of γ-H2AX and cC3 proteins was elevated in all treatment groups compared with control, whereas BRCA-wt MDA-MB-468 cC3 expression did not increase with treatment. Carboplatin treatment induced common gene-expression changes in BRCA-mutant models. Carboplatin ± ABT888 penetrates the brain and improves survival in BRCA-mutant intracranial TNBC models with corresponding DNA damage and gene-expression changes. Combination therapy represents a potential promising treatment strategy for patients with TNBC brain metastases warranting further clinical investigation.


Subject(s)
Antineoplastic Agents/pharmacology , BRCA1 Protein/genetics , Benzimidazoles/pharmacology , Carboplatin/pharmacology , Mutation , Triple Negative Breast Neoplasms/genetics , Animals , Antineoplastic Agents/administration & dosage , Benzimidazoles/administration & dosage , Blood-Brain Barrier/metabolism , Carboplatin/administration & dosage , Cell Line, Tumor , Cell Survival/drug effects , Cluster Analysis , Disease Models, Animal , Drug Synergism , Female , Gene Expression Profiling , Humans , Mice , Permeability , Poly(ADP-ribose) Polymerases/metabolism , Triple Negative Breast Neoplasms/diagnosis , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/mortality , Triple Negative Breast Neoplasms/pathology , Xenograft Model Antitumor Assays
17.
Breast Cancer Res ; 16(3): 304, 2014 May 06.
Article in English | MEDLINE | ID: mdl-25679873

ABSTRACT

Brain metastases remain a significant challenge in the treatment of breast cancer patients due to the unique environment posed by the central nervous system. A better understanding of the biology of breast cancer cells that have metastasized to the brain is required to develop improved therapies. A recent Proceedings of the National Academy of Sciences article demonstrates that breast cancer cells in the brain microenvironment express γ-aminobutyric acid (GABA)-related genes, enabling them to utilize GABA as an oncometabolite, thus gaining a proliferative advantage. In this viewpoint, we highlight these findings and their potential impact on the treatment of breast cancer brain metastases.


Subject(s)
Brain Neoplasms/metabolism , Breast Neoplasms/metabolism , Neurons/metabolism , 4-Aminobutyrate Transaminase/metabolism , Antineoplastic Agents/therapeutic use , Brain Neoplasms/drug therapy , Brain Neoplasms/secondary , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Female , GABA Plasma Membrane Transport Proteins/metabolism , Glutamate Decarboxylase/metabolism , Humans , Neurons/drug effects , Receptors, GABA-A/metabolism , Tumor Microenvironment/drug effects , gamma-Aminobutyric Acid/metabolism
18.
J Clin Invest ; 123(5): 2078-93, 2013 May.
Article in English | MEDLINE | ID: mdl-23563312

ABSTRACT

Malignant melanoma is characterized by a propensity for early lymphatic and hematogenous spread. The hypoxia-inducible factor (HIF) family of transcription factors is upregulated in melanoma by key oncogenic drivers. HIFs promote the activation of genes involved in cancer initiation, progression, and metastases. Hypoxia has been shown to enhance the invasiveness and metastatic potential of tumor cells by regulating the genes involved in the breakdown of the ECM as well as genes that control motility and adhesion of tumor cells. Using a Pten-deficient, Braf-mutant genetically engineered mouse model of melanoma, we demonstrated that inactivation of HIF1α or HIF2α abrogates metastasis without affecting primary tumor formation. HIF1α and HIF2α drive melanoma invasion and invadopodia formation through PDGFRα and focal adhesion kinase-mediated (FAK-mediated) activation of SRC and by coordinating ECM degradation via MT1-MMP and MMP2 expression. These results establish the importance of HIFs in melanoma progression and demonstrate that HIF1α and HIF2α activate independent transcriptional programs that promote metastasis by coordinately regulating cell invasion and ECM remodeling.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/metabolism , Gene Expression Regulation, Neoplastic , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Melanoma/metabolism , Skin Neoplasms/metabolism , Animals , Cell Line, Tumor , Extracellular Matrix/metabolism , Focal Adhesion Protein-Tyrosine Kinases/metabolism , Humans , Hypoxia , Melanoma/pathology , Mice , Microscopy, Fluorescence , Mutation , Neoplasm Metastasis , Oncogenes , PTEN Phosphohydrolase/metabolism , Proto-Oncogene Proteins B-raf/metabolism , RNA, Small Interfering/metabolism , Skin Neoplasms/pathology
19.
Investig Genet ; 2: 22, 2011 Nov 01.
Article in English | MEDLINE | ID: mdl-22040348

ABSTRACT

In the United States, several states have made policy decisions regarding whether and how to use familial searching of the Combined DNA Index System (CODIS) database in criminal investigations. Familial searching pushes DNA typing beyond merely identifying individuals to detecting genetic relatedness, an application previously reserved for missing persons identifications and custody battles. The intentional search of CODIS for partial matches to an item of evidence offers law enforcement agencies a powerful tool for developing investigative leads, apprehending criminals, revitalizing cold cases and exonerating wrongfully convicted individuals. As familial searching involves a range of logistical, social, ethical and legal considerations, states are now grappling with policy options for implementing familial searching to balance crime fighting with its potential impact on society. When developing policies for familial searching, legislators should take into account the impact of familial searching on select populations and the need to minimize personal intrusion on relatives of individuals in the DNA database. This review describes the approaches used to narrow a suspect pool from a partial match search of CODIS and summarizes the economic, ethical, logistical and political challenges of implementing familial searching. We examine particular US state policies and the policy options adopted to address these issues. The aim of this review is to provide objective background information on the controversial approach of familial searching to inform policy decisions in this area. Herein we highlight key policy options and recommendations regarding effective utilization of familial searching that minimize harm to and afford maximum protection of US citizens.

SELECTION OF CITATIONS
SEARCH DETAIL
...