Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Ecotoxicology ; 33(2): 131-141, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38381206

ABSTRACT

Terrestrial soils in forested landscapes represent some of the largest mercury (Hg) reserves globally. Wildfire can alter the storage and distribution of terrestrial-bound Hg via reemission to the atmosphere or mobilization in watersheds where it may become available for methylation and uptake into food webs. Using data associated with the 2007 Moonlight and Antelope Fires in California, we examined the long-term direct effects of wildfire burn severity on the distribution and magnitude of Hg concentrations in riparian food webs. Additionally, we quantified the cross-ecosystem transfer of Hg from aquatic invertebrate to riparian bird communities; and assessed the influence of biogeochemical, landscape variables, and ecological factors on Hg concentrations in aquatic and terrestrial food webs. Benthic macroinvertebrate methylmercury (MeHg) and riparian bird blood total mercury (THg) concentrations varied by 710- and 760-fold, respectively, and Hg concentrations were highest in predators. We found inconsistent relationships between Hg concentrations across and within taxa and guilds in response to stream chemical parameters and burn severity. Macroinvertebrate scraper MeHg concentrations were influenced by dissolved organic carbon (DOC); however, that relationship was moderated by burn severity (as burn severity increased the effect of DOC declined). Omnivorous bird Hg concentrations declined with increasing burn severity. Overall, taxa more linked to in situ energetic pathways may be more responsive to the biogeochemical processes that influence MeHg cycling. Remarkably, 8 years post-fire, we still observed evidence of burn severity influencing Hg concentrations within riparian food webs, illustrating its overarching role in altering the storage and redistribution of Hg and influencing biogeochemical processes.


Subject(s)
Burns , Mercury , Methylmercury Compounds , Water Pollutants, Chemical , Wildfires , Animals , Ecosystem , Rivers , Water Pollutants, Chemical/analysis , Invertebrates/metabolism , Mercury/analysis , Methylmercury Compounds/metabolism , Food Chain , Birds/metabolism , Environmental Monitoring
3.
Proc Natl Acad Sci U S A ; 120(28): e2221961120, 2023 07 11.
Article in English | MEDLINE | ID: mdl-37399376

ABSTRACT

Changes in phenology in response to ongoing climate change have been observed in numerous taxa around the world. Differing rates of phenological shifts across trophic levels have led to concerns that ecological interactions may become increasingly decoupled in time, with potential negative consequences for populations. Despite widespread evidence of phenological change and a broad body of supporting theory, large-scale multitaxa evidence for demographic consequences of phenological asynchrony remains elusive. Using data from a continental-scale bird-banding program, we assess the impact of phenological dynamics on avian breeding productivity in 41 species of migratory and resident North American birds breeding in and around forested areas. We find strong evidence for a phenological optimum where breeding productivity decreases in years with both particularly early or late phenology and when breeding occurs early or late relative to local vegetation phenology. Moreover, we demonstrate that landbird breeding phenology did not keep pace with shifts in the timing of vegetation green-up over a recent 18-y period, even though avian breeding phenology has tracked green-up with greater sensitivity than arrival for migratory species. Species whose breeding phenology more closely tracked green-up tend to migrate shorter distances (or are resident over the entire year) and breed earlier in the season. These results showcase the broadest-scale evidence yet of the demographic impacts of phenological change. Future climate change-associated phenological shifts will likely result in a decrease in breeding productivity for most species, given that bird breeding phenology is failing to keep pace with climate change.


Subject(s)
Songbirds , Animals , Climate Change , Seasons , North America , Demography
4.
PLoS One ; 18(3): e0281687, 2023.
Article in English | MEDLINE | ID: mdl-36877704

ABSTRACT

In conifer forests of western North America, wildlife populations can change rapidly in the decade following wildfire as trees die and animals respond to concomitant resource pulses that occur across multiple trophic levels. In particular, black-backed woodpeckers (Picoides arcticus) show predictable temporal increases then declines following fire; this trajectory is widely believed to be a response to the woodpeckers' main prey, woodboring beetle larvae of the families Buprestidae and Cerambycidae, but we lack understanding of how abundances of these predators and prey may be associated in time or space. Here, we pair woodpecker surveys over 10 years with surveys of woodboring beetle sign and activity, collected at 128 survey plots across 22 recent fires, to ask whether accumulated beetle sign indicates current or past black-backed woodpecker occurrence, and whether that relationship is mediated by the number of years since fire. We test this relationship using an integrative multi-trophic occupancy model. Our results demonstrate that woodboring beetle sign is a positive indicator of woodpecker presence 1-3 years following fire, an uninformative indicator from 4-6 years after fire, and a negative indicator beginning 7 years following fire. Woodboring beetle activity, itself, is temporally variable and dependent on tree species composition, with beetle sign generally accumulating over time, particularly in stands with diverse tree communities, but decreasing over time in Pinus-dominated stands where faster bark decay rates lead to brief pulses of beetle activity followed by rapid degradation of tree substrate and accumulated beetle sign. Altogether, the strong connections of woodpecker occurrence to beetle activity support prior hypotheses of how multi-trophic interactions govern rapid temporal dynamics of primary and secondary consumers in burned forests. While our results indicate that beetle sign is, at best, a rapidly shifting and potentially misleading measure of woodpecker occurrence, the better we understand the interacting mechanisms underlying temporally dynamic systems, the more successfully we will be able to predict the outcomes of management actions.


Subject(s)
Coleoptera , Fires , Wildfires , Animals , Animals, Wild , Birds , Trees
5.
Ecol Appl ; 33(4): e2853, 2023 06.
Article in English | MEDLINE | ID: mdl-36995347

ABSTRACT

Spatial and temporal variation in fire characteristics-termed pyrodiversity-are increasingly recognized as important factors that structure wildlife communities in fire-prone ecosystems, yet there have been few attempts to incorporate pyrodiversity or post-fire habitat dynamics into predictive models of animal distributions and abundance to support post-fire management. We use the black-backed woodpecker-a species associated with burned forests-as a case study to demonstrate a pathway for incorporating pyrodiversity into wildlife habitat assessments for adaptive management. Employing monitoring data (2009-2019) from post-fire forests in California, we developed three competing occupancy models describing different hypotheses for habitat associations: (1) a static model representing an existing management tool, (2) a temporal model accounting for years since fire, and (3) a temporal-landscape model which additionally incorporates emerging evidence from field studies about the influence of pyrodiversity. Evaluating predictive ability, we found superior support for the temporal-landscape model, which showed a positive relationship between occupancy and pyrodiversity and interactions between habitat associations and years since fire. We incorporated the new temporal-landscape model into an RShiny application to make this decision-support tool accessible to decision-makers.


Subject(s)
Ecosystem , Fires , Animals , Animals, Wild , Forests , Birds
6.
Nat Ecol Evol ; 6(12): 1860-1870, 2022 12.
Article in English | MEDLINE | ID: mdl-36302998

ABSTRACT

Quantifying environment-morphology relationships is important not only for understanding the fundamental processes driving phenotypic diversity within and among species but also for predicting how species will respond to ongoing global change. Despite a clear set of expectations motivated by ecological theory, broad evidence in support of generalizable effects of abiotic conditions on spatial and temporal intraspecific morphological variation has been limited. Using standardized data from >250,000 captures of 105 landbird species, we assessed intraspecific shifts in the morphology of adult male birds since 1989 while simultaneously measuring spatial morphological gradients across the North American continent. We found strong spatial and temporal trends in average body size, with warmer temperatures associated with smaller body sizes both at more equatorial latitudes and in more recent years. The magnitude of these thermal effects varied both across and within species, with results suggesting it is the warmest, rather than the coldest, temperatures that drive both spatial and temporal trends. Stronger responses to spatial-rather than temporal-variation in temperature suggest that morphological change may not be keeping up with the pace of climate change. Additionally, as elevation increases, we found that body size declines as relative wing length increases, probably due to the benefits that longer wings confer for flight in thin air environments. Our results provide support for both existing and new large-scale ecomorphological 'rules' and highlight how the response of functional trade-offs to abiotic variation drives morphological change.


Subject(s)
Birds , Climate Change , Animals , Male , Birds/physiology , Temperature , Body Size , North America
7.
Ecol Evol ; 12(6): e8934, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35784033

ABSTRACT

The demography and dynamics of migratory bird populations depend on patterns of movement and habitat quality across the annual cycle. We leveraged archival GPS-tagging data, climate data, remote-sensed vegetation data, and bird-banding data to better understand the dynamics of black-headed grosbeak (Pheucticus melanocephalus) populations in two breeding regions, the coast and Central Valley of California (Coastal California) and the Sierra Nevada mountain range (Sierra Nevada), over 28 years (1992-2019). Drought conditions across the annual cycle and rainfall timing on the molting grounds influenced seasonal habitat characteristics, including vegetation greenness and phenology (maturity dates). We developed a novel integrated population model with population state informed by adult capture data, recruitment rates informed by age-specific capture data and climate covariates, and survival rates informed by adult capture-mark-recapture data and climate covariates. Population size was relatively variable among years for Coastal California, where numbers of recruits and survivors were positively correlated, and years of population increase were largely driven by recruitment. In the Sierra Nevada, population size was more consistent and showed stronger evidence of population regulation (numbers of recruits and survivors negatively correlated). Neither region showed evidence of long-term population trend. We found only weak support for most climate-demographic rate relationships. However, recruitment rates for the Coastal California region were higher when rainfall was relatively early on the molting grounds and when wintering grounds were relatively cool and wet. We suggest that our approach of integrating movement, climate, and demographic data within a novel modeling framework can provide a useful method for better understanding the dynamics of broadly distributed migratory species.

8.
J Anim Ecol ; 90(5): 1317-1327, 2021 05.
Article in English | MEDLINE | ID: mdl-33638165

ABSTRACT

Pyrodiversity, defined as variation in fire history and characteristics, has been shown to catalyse post-fire biodiversity in a variety of systems. However, the demographic and behavioural mechanisms driving the responses of individual species to pyrodiversity remain largely unexplored. We used a model post-fire specialist, the black-backed woodpecker (Picoides arcticus), to examine the relationship between fire characteristics and juvenile survival while controlling for confounding factors. We radio-tracked fledgling black-backed woodpeckers in burned forests of California and Washington, USA, and derived information on habitat characteristics using ground surveys and satellite data. We used hierarchical Bayesian mixed-effects models to determine the factors that influence both fledgling and annual juvenile survival, and we tested for effects of fledgling age on movement rates. Burn severity strongly affected fledgling survival, with lower survival in patches created by high-severity fire compared to patches burned at medium to low severity or left unburned. Time since leaving the nest was also a strong predictor of fledgling survival, annual juvenile survival and fledgling movement rates. Our results support the role of habitat complementation in generating species-specific benefits from variation in spatial fire characteristics-one axis of pyrodiversity-and highlight the importance of this variation under shifting fire regimes. High-severity fire provides foraging and nesting sites that support the needs of adult black-backed woodpeckers, but fledgling survival is greater in areas burned at lower severity. By linking breeding and foraging habitat with neighbouring areas of reduced predation risk, pyrodiversity may enhance the survival and persistence of animals that thrive in post-fire habitat.


Subject(s)
Burns , Fires , Animals , Bayes Theorem , Ecosystem , Forests , Washington
9.
PLoS One ; 15(10): e0227161, 2020.
Article in English | MEDLINE | ID: mdl-33052936

ABSTRACT

Dispersal of whitebark pine (Pinus albicaulis Engelm.), a keystone species of many high-elevation ecosystems in western North America, depends on Clark's nutcracker (Nucifraga columbiana Wilson), a seed-caching bird with an affinity for whitebark seeds. To the extent that this dependence is mutual, declines in whitebark seed production could cause declines in nutcracker abundance. Whitebark pine is in decline across much of its range due to interacting stressors, including the non-native pathogen white pine blister rust (Cronartium ribicola J. C. Fisch.). We used avian point-count data and tree surveys from four national park units to investigate whether trends in whitebark pine can explain trends in Clark's nutcracker. Spatial trends were modeled using recent data from two parks, while temporal trends were modeled using longer time-series of nutcracker and whitebark data from two additional parks. To assess the potential dependence of nutcrackers on whitebark, we linked a model of nutcracker density (accounting for detection probability) with a model of whitebark trends, using a Bayesian framework to translate uncertainty in whitebark metrics to uncertainty in nutcracker density. In Mount Rainier National Park, temporal models showed dramatic declines in nutcracker density concurrent with significant increases in whitebark crown mortality and trees infected with white pine blister rust. However, nutcrackers did not trend with whitebark metrics in North Cascades National Park Service Complex. In spatial models of data from Yosemite National Park and Sequoia-Kings Canyon National Park, nutcracker density varied not only with local cover of whitebark but also with elevation and, in Sequoia-Kings Canyon, with cover of another species of white pine. Our results add support for the hypothesis that the mutualism between whitebark pine and Clark's nutcracker is vulnerable to disruption by blister rust, and our approach integrates data across monitoring programs to explore trends in species interactions.


Subject(s)
Passeriformes/growth & development , Pinus/growth & development , Animals , Bayes Theorem , North America , Parks, Recreational , Population Density , Population Dynamics , Spatio-Temporal Analysis , Symbiosis
10.
Environ Entomol ; 49(1): 220-229, 2020 02 17.
Article in English | MEDLINE | ID: mdl-31990033

ABSTRACT

Many bumble bee species (Bombus Latreille) have declined dramatically across North America and the globe, highlighting the need for a greater understanding of the habitat required to sustain or recover populations. Determining bumble bee species' plant selection is important for retaining and promoting high-quality plant resources that will help populations persist. We used nonlethal methods to sample 413 plots within riparian corridors and meadows in the Sierra Nevada of California for bumble bees during two summers following extremely low and normal precipitation years, respectively. We assessed the five most abundant bumble bee species' plant selection by comparing their floral use to availability. Additionally, we described the shift in plant selection between years for the most abundant species, Bombus vosnesenskii Radoszkowski. Bumble bee species richness was constant between years (13 species) but abundance nearly tripled from 2015 to 2016 (from 1243 to 3612 captures), driven largely by a dramatic increase in B. vosnesenskii. We captured bumble bees on 104 plant species or complexes, but only 14 were significantly selected by at least one bumble bee species. Each of the five most frequently captured bumble bee species selected at least one unique plant species. Plant blooming phenology, relative availability of flowers of individual plant species, and plant selection by B. vosnesenkii remained fairly constant between the two study years, suggesting that maintaining, seeding, or planting with these 'bumble bee plants' may benefit these five bumble bee species.


Subject(s)
Hymenoptera , Animals , Bees , California , Ecosystem , Flowers , Plants
11.
Ecol Evol ; 9(9): 5324-5337, 2019 May.
Article in English | MEDLINE | ID: mdl-31110682

ABSTRACT

Wildfires are increasing in incidence and severity across coniferous forests of the western United States, leading to changes in forest structure and wildlife habitats. Knowledge of how species respond to fire-driven habitat changes in these landscapes is limited and generally disconnected from our understanding of adaptations that underpin responses to fire.We aimed to investigate drivers of occupancy of a diverse bat community in a fire-altered landscape, while identifying functional traits that underpinned these relationships.We recorded bats acoustically at 83 sites (n = 249 recording nights) across the Plumas National Forest in the northern Sierra Nevada over 3 summers (2015-2017). We investigated relationships between fire regime, physiographic variables, forest structure and probability of bat occupancy for nine frequently detected species. We used fourth-corner regression and RLQ analysis to identify ecomorphological traits driving species-environment relationships across 17 bat species. Traits included body mass; call frequency, bandwidth, and duration; and foraging strategy based on vegetation structure (open, edge, or clutter).Relationships between bat traits and fire regime were underpinned by adaptations to diverse forest structure. Bats with traits adapting them to foraging in open habitats, including emitting longer duration and narrow bandwidth calls, were associated with higher severity and more frequent fires, whereas bats with traits consistent with clutter tolerance were negatively associated with fire frequency and burn severity. Relationships between edge-adapted bat species and fire were variable and may be influenced by prey preference or habitat configuration at a landscape scale.Predicted increases in fire frequency and severity in western US coniferous forests are likely to shift dominance in the bat community to open-adapted species and those able to exploit postfire resource pulses (aquatic insects, beetles, and snags). Managing for pyrodiversity within the western United States is likely important for maintaining bat community diversity, as well as diversity of other biotic communities.

12.
Glob Chang Biol ; 25(3): 985-996, 2019 03.
Article in English | MEDLINE | ID: mdl-30506620

ABSTRACT

Climate variation has been linked to historical and predicted future distributions and dynamics of wildlife populations. However, demographic mechanisms underlying these changes remain poorly understood. Here, we assessed variation and trends in climate (annual snowfall and spring temperature anomalies) and avian demographic variables from mist-netting data (breeding phenology and productivity) at six sites along an elevation gradient spanning the montane zone of Yosemite National Park between 1993 and 2017. We implemented multi-species hierarchical models to relate demographic responses to elevation and climate covariates. Annual variation in climate and avian demographic variables was high. Snowfall declined (10 mm/year at the highest site, 2 mm at the lowest site), while spring temperature increased (0.045°C/year) over the study period. Breeding phenology (mean first capture date of juvenile birds) advanced by 0.2 day/year (5 days); and productivity (probability of capturing a juvenile bird) increased by 0.8%/year. Breeding phenology was 12 days earlier at the lowest compared to highest site, 18 days earlier in years with lowest compared to highest snowfall anomalies, and 6 d earlier in relatively warm springs (after controlling for snowfall effects). Productivity was positively related to elevation. However, elevation-productivity responses varied among species; species with higher productivity at higher compared to lower elevations tended to be species with documented range retractions during the past century. Productivity tended to be negatively related to snowfall and was positively related to spring temperature. Overall, our results suggest that birds have tracked the variable climatic conditions in this system and have benefited from a trend toward warmer, drier springs. However, we caution that continued warming and multi-year drought or extreme weather years may alter these relationships in the future. Multi-species demographic modeling, such as implemented here, can provide an important tool for guiding conservation of species assemblages under global change.


Subject(s)
Altitude , Birds/physiology , Climate Change , Reproduction , Animals , Birds/classification , Demography , Models, Biological , Snow , Species Specificity , Temperature
13.
J Anim Ecol ; 87(5): 1484-1496, 2018 09.
Article in English | MEDLINE | ID: mdl-29782655

ABSTRACT

Fire creates challenges and opportunities for wildlife through rapid destruction, modification and creation of habitat. Fire has spatially variable effects on landscapes; however, for species that benefit from the ephemeral resource patches created by fire, it is critical to understand characteristics of fires that promote postfire colonization and persistence and the spatial scales on which they operate. Using a model postfire specialist, the black-backed woodpecker (Picoides arcticus), we examined how colonization and persistence varied across two spatial scales as a function of four characteristics of fire regimes-fire severity, fire size, fire ignition date and number of years since fire. We modelled black-backed woodpecker colonization and persistence using data from 108 recently burned forests in the Sierra Nevada and southern Cascades ecoregions of California, USA, that we monitored for up to 10 years following fire. We employed a novel, spatially hierarchical, dynamic occupancy framework which differentiates colonization and persistence at two spatial scales: across fires and within fires. We found strong effects of fire characteristics on dynamic rates, with colonization and persistence declining across both spatial scales with increasing years since fire. Additionally, at sites within fires, colonization decreased with fire size and increased with fire severity and for fires with later ignition dates. Our results support the notion that different aspects of a species' environment are important for population processes at different spatial scales. As habitat quality is ephemeral for any given postfire area, our results illustrate the importance of time since fire in structuring occupancy at the fire level, with other characteristics of fires playing larger roles in determining abundance within individual fires. Our results contribute to the broader understanding of how variation in fire characteristics influences the colonization and persistence of species using ephemeral habitats, which is necessary for conserving and promoting postfire biodiversity in the context of rapidly shifting fire regimes.


Subject(s)
Fires , Animals , California , Ecosystem , Forests , Nevada
14.
Proc Biol Sci ; 283(1840)2016 Oct 12.
Article in English | MEDLINE | ID: mdl-27708152

ABSTRACT

An emerging hypothesis in fire ecology is that pyrodiversity increases species diversity. We test whether pyrodiversity-defined as the standard deviation of fire severity-increases avian biodiversity at two spatial scales, and whether and how this relationship may change in the decade following fire. We use a dynamic Bayesian community model applied to a multi-year dataset of bird surveys at 1106 points sampled across 97 fires in montane California. Our results provide strong support for a positive relationship between pyrodiversity and bird diversity. This relationship interacts with time since fire, with pyrodiversity having a greater effect on biodiversity at 10 years post-fire than at 1 year post-fire. Immediately after fires, patches of differing burn severities hold similar bird communities, but over the ensuing decade, bird assemblages within patches of contrasting severities differentiate. When evaluated at the scale of individual fires, fires with a greater heterogeneity of burn severities hold substantially more species. High spatial heterogeneity in severity, sometimes called 'mixed-severity fire', is a natural part of wildfire regimes in western North America, but may be jeopardized by climate change and a legacy of fire suppression. Forest management that encourages mixed-severity fire may be critical for sustaining biodiversity across fire-prone landscapes.


Subject(s)
Biodiversity , Birds/classification , Fires , Forests , Animals , Bayes Theorem , California , Climate Change
15.
Mol Ecol ; 23(23): 5726-39, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25346105

ABSTRACT

Neotropic migratory birds are declining across the Western Hemisphere, but conservation efforts have been hampered by the inability to assess where migrants are most limited-the breeding grounds, migratory stopover sites or wintering areas. A major challenge has been the lack of an efficient, reliable and broadly applicable method for measuring the strength of migratory connections between populations across the annual cycle. Here, we show how high-resolution genetic markers can be used to identify genetically distinct groups of a migratory bird, the Wilson's warbler (Cardellina pusilla), at fine enough spatial scales to facilitate assessing regional drivers of demographic trends. By screening 1626 samples using 96 highly divergent single nucleotide polymorphisms selected from a large pool of candidates (~450 000), we identify novel region-specific migratory routes and timetables of migration along the Pacific Flyway. Our results illustrate that high-resolution genetic markers are more reliable, precise and amenable to high throughput screening than previously described intrinsic marking techniques, making them broadly applicable to large-scale monitoring and conservation of migratory organisms.


Subject(s)
Animal Migration , Genetic Markers , Genetics, Population , Songbirds/genetics , Animals , Conservation of Natural Resources/methods , High-Throughput Nucleotide Sequencing , Polymorphism, Single Nucleotide , Sequence Analysis, DNA
16.
Mol Ecol ; 22(16): 4163-4176, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23906339

ABSTRACT

Methods for determining patterns of migratory connectivity in animal ecology have historically been limited due to logistical challenges. Recent progress in studying migratory bird connectivity has been made using genetic and stable-isotope markers to assign migratory individuals to their breeding grounds. Here, we present a novel Bayesian approach to jointly leverage genetic and isotopic markers and we test its utility on two migratory passerine bird species. Our approach represents a principled model-based combination of genetic and isotope data from samples collected on the breeding grounds and is able to achieve levels of assignment accuracy that exceed those of either method alone. When applied at large scale the method can reveal specific migratory connectivity patterns. In Wilson's warblers (Wilsonia pusilla), we detect a subgroup of birds wintering in Baja that uniquely migrate preferentially from the coastal Pacific Northwest. Our approach is implemented in a way that is easily extended to accommodate additional sources of information (e.g. bi-allelic markers, species distribution models, etc.) or adapted to other species or assignment problems.


Subject(s)
Animal Migration/physiology , Genetics, Population/methods , Models, Statistical , Songbirds/genetics , Animals , Bayes Theorem , Breeding , California , Isotopes , Microsatellite Repeats/genetics , Northwestern United States , Songbirds/classification , Songbirds/physiology
17.
J Zoo Wildl Med ; 43(2): 421-4, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22779254

ABSTRACT

The black-backed woodpecker (Picoides arcticus) is a species of management concern in California. As part of a study of black-backed woodpecker home range size and foraging ecology, nine birds in Lassen National Forest (Shasta and Lassen Counties, California) were radio-tracked during the 2011 breeding season. One of the marked birds was found dead after being tracked for a 10-wk period in which it successfully nested. A postmortem examination of the dead bird revealed that it was emaciated and autolyzed, with the presumptive cause being numerous spiruroid nematodes of the genus Procyrnea in the gizzard. This first observation of Procyrnea nematodes in a black-backed woodpecker is notable because the Procyrnea infection was considered lethal and because Procyrnea has been implicated in substantial die-offs in other bird species, including woodpeckers.


Subject(s)
Bird Diseases/parasitology , Nematoda/classification , Nematode Infections/veterinary , Animals , Bird Diseases/epidemiology , Bird Diseases/pathology , Birds , California/epidemiology , Fatal Outcome , Gastrointestinal Diseases/epidemiology , Gastrointestinal Diseases/parasitology , Gastrointestinal Diseases/veterinary , Nematode Infections/epidemiology , Nematode Infections/parasitology , Nematode Infections/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...