Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 32(4): 6575-6586, 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38439357

ABSTRACT

We introduce a portable dual-comb spectrometer operating in the visible spectral region for atmospheric monitoring of NO2, a pollution gas of major importance. Dual-comb spectroscopy, combining key advantages of fast, broadband and accurate measurements, has been established in the infrared as a method for the investigation of atmospheric gases with kilometer-scale absorption path lengths. With the presented dual-comb spectrometer centered at 517 nm, we make use of the strong absorption cross section of NO2 in this spectral region. In combination with a multi-pass approach through the atmosphere, we achieve an interaction path length of almost a kilometer while achieving both advanced spatial resolution (90 m) and a detection sensitivity of 5 ppb. The demonstrated temporal resolution of one minute outperforms the standard chemiluminescence-based NO2 detector that is commercially available and used in this experiment, by a factor of three.

2.
Nat Commun ; 11(1): 430, 2020 Jan 22.
Article in English | MEDLINE | ID: mdl-31969568

ABSTRACT

The sub-cycle interaction of light and matter is one of the key frontiers of inquiry made accessible by attosecond science. Here, we show that when light excites a pair of charge carriers inside of a solid, the transition probability is strongly localized to instants slightly after the extrema of the electric field. The extreme temporal localization is utilized in a simple electronic circuit to record the waveforms of infrared to ultraviolet light fields. This form of petahertz-bandwidth field metrology gives access to both the modulated transition probability and its temporal offset from the laser field, providing sub-fs temporal precision in reconstructing the sub-cycle electronic response of a solid state structure.

3.
Nature ; 571(7764): 240-244, 2019 07.
Article in English | MEDLINE | ID: mdl-31243366

ABSTRACT

The enigmatic interplay between electronic and magnetic phenomena observed in many early experiments and outlined in Maxwell's equations propelled the development of modern electromagnetism1. Today, the fully controlled evolution of the electric field of ultrashort laser pulses enables the direct and ultrafast tuning of the electronic properties of matter, which is the cornerstone of light-wave electronics2-7. By contrast, owing to the lack of first-order interaction between light and spin, the magnetic properties of matter can only be affected indirectly and on much longer timescales, through a sequence of optical excitations and subsequent rearrangement of the spin structure8-16. Here we introduce the regime of ultrafast coherent magnetism and show how the magnetic properties of a ferromagnetic layer stack can be manipulated directly by the electric-field oscillations of light, reducing the magnetic response time to an external stimulus by two orders of magnitude. To track the unfolding dynamics in real time, we develop an attosecond time-resolved magnetic circular dichroism detection scheme, revealing optically induced spin and orbital momentum transfer in synchrony with light-field-driven coherent charge relocation17. In tandem with ab initio quantum dynamical modelling, we show how this mechanism enables the simultaneous control of electronic and magnetic properties that are essential for spintronic functionality. Our study unveils light-field coherent control of spin dynamics and macroscopic magnetic moments in the initial non-dissipative temporal regime and establishes optical frequencies as the speed limit of future coherent spintronic applications, spin transistors and data storage media.

SELECTION OF CITATIONS
SEARCH DETAIL
...