Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Soft Robot ; 2024 May 07.
Article in English | MEDLINE | ID: mdl-38717834

ABSTRACT

Soft pneumatic actuators are used to steer soft growing "vine" robots while being flexible enough to undergo the tip eversion required for growth. In this study, we compared the performance of three types of pneumatic actuators in terms of their ability to perform eversion, quasi-static bending, dynamic motion, and force output: the pouch motor, the cylindrical pneumatic artificial muscle (cPAM), and the fabric pneumatic artificial muscle (fPAM). The pouch motor is advantageous for prototyping owing to its simple manufacturing process. The cPAM exhibits superior bending behavior and produces the highest forces, whereas the fPAM actuates fastest and everts at the lowest pressure. We evaluated a range of dimensions for each actuator type. Larger actuators can produce more significant deformations and forces, but smaller actuators inflate faster and can evert at a lower pressure. Because vine robots are lightweight, the effect of gravity on the functionality of different actuators is minimal. We developed a new analytical model that predicts the pressure-to-bending behavior of vine robot actuators. Using the actuator results, we designed and demonstrated a 4.8 m long vine robot equipped with highly maneuverable 60 × 60 mm cPAMs in a three-dimensional obstacle course. The vine robot was able to move around sharp turns, travel through a passage smaller than its diameter, and lift itself against gravity.

2.
Nat Commun ; 15(1): 3507, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38664400

ABSTRACT

Real-time high-resolution wind predictions are beneficial for various applications including safe crewed and uncrewed aviation. Current weather models require too much compute and lack the necessary predictive capabilities as they are valid only at the scale of multiple kilometers and hours - much lower spatial and temporal resolutions than these applications require. Our work demonstrates the ability to predict low-altitude time-averaged wind fields in real time on limited-compute devices, from only sparse measurement data. We train a deep neural network-based model, WindSeer, using only synthetic data from computational fluid dynamics simulations and show that it can successfully predict real wind fields over terrain with known topography from just a few noisy and spatially clustered wind measurements. WindSeer can generate accurate predictions at different resolutions and domain sizes on previously unseen topography without retraining. We demonstrate that the model successfully predicts historical wind data collected by weather stations and wind measured by drones during flight.

3.
Sci Robot ; 7(66): eabp9742, 2022 05 25.
Article in English | MEDLINE | ID: mdl-35613301

ABSTRACT

This article presents the core technologies and deployment strategies of Team CERBERUS that enabled our winning run in the DARPA Subterranean Challenge finals. CERBERUS is a robotic system-of-systems involving walking and flying robots presenting resilient autonomy, as well as mapping and navigation capabilities to explore complex underground environments.


Subject(s)
Robotics
4.
Sensors (Basel) ; 22(2)2022 Jan 09.
Article in English | MEDLINE | ID: mdl-35062435

ABSTRACT

Increasing demand for rail transportation results in denser and more high-speed usage of the existing railway network, making new and more advanced vehicle safety systems necessary. Furthermore, high traveling speeds and the large weights of trains lead to long braking distances-all of which necessitates a Long-Range Obstacle Detection (LROD) system, capable of detecting humans and other objects more than 1000 m in advance. According to current research, only a few sensor modalities are capable of reaching this far and recording sufficiently accurate data to distinguish individual objects. The limitation of these sensors, such as a 1D-Light Detection and Ranging (LiDAR), is however a very narrow Field of View (FoV), making it necessary to use high-precision means of orienting to target them at possible areas of interest. To close this research gap, this paper presents a high-precision pointing mechanism, for the use in a future novel railway obstacle detection system, capable of targeting a 1D-LiDAR at humans or objects at the required distance. This approach addresses the challenges of a low target price, restricted access to high-precision machinery and equipment as well as unique requirements of our target application. By combining established elements from 3D printers and Computer Numerical Control (CNC) machines with a double-hinged lever system, simple and low-cost components are capable of precisely orienting an arbitrary sensor platform. The system's actual pointing accuracy has been evaluated using a controlled, in-door, long-range experiment. The device was able to demonstrate a precision of 6.179 mdeg, which is at the limit of the measurable precision of the designed experiment.


Subject(s)
Computers , Transportation , Data Collection , Humans
5.
Soft Matter ; 17(22): 5532-5539, 2021 Jun 09.
Article in English | MEDLINE | ID: mdl-33973605

ABSTRACT

Spiders use their inner body fluid ("blood" or hemolymph) to drive hydraulic extension of their legs. In hydraulic systems, performance is highly dependent on the working fluid, which needs to be chosen according to the required operating speed and pressure. Here, we provide new insights into the fluid mechanics of spider locomotion. We present the three-dimensional structure of one of the crucial joints in spider hydraulic actuation, elucidate the fluid flow inside the spider leg, and quantify the rheological properties of hemolymph under physiological conditions. We observe that hemolymph behaves as a shear-thinning non-Newtonian fluid with a fluid behavior index n = 0.5, unlike water (n = 1.0).


Subject(s)
Body Fluids , Spiders , Animals , Locomotion , Rheology
6.
Adv Sci (Weinh) ; 8(5): 2003890, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33717859

ABSTRACT

Jumping spiders (Phidippus regius) are known for their ability to traverse various terrains and have targeted jumps within the fraction of a second to catch flying preys. Different from humans and insects, spiders use muscles to flex their legs, and hydraulic actuation for extension. By pressurizing their inner body fluid, they can achieve fast leg extensions for running and jumping. Here, the working principle of the articular membrane covering the spider leg joint pit is investigated. This membrane is highly involved in walking, grasping, and jumping motions. Hardness and stiffness of the articular membrane is studied using nanoindentation tests and preparation methods for scanning electron microscopy and histology are developed to give detailed information about the inner and outer structure of the leg joint and its membrane. Inspired by the stroller umbrella-like folding mechanism of the articular membrane, a robust thermoplastic polyurethane-based rotary semifluidic actuator is demonstrated, which shows increased durability, achieves working angles over 120°, produces high torques which allows lifts over 100 times of its own weight and jumping abilities. The developed actuator can be used for future grasping tasks, safe human-robot interactions and multilocomotion ground robot applications, and it can shed light into spider locomotion-related questions.

7.
Sensors (Basel) ; 20(5)2020 Mar 06.
Article in English | MEDLINE | ID: mdl-32155749

ABSTRACT

Robust and accurate pose estimation is crucial for many applications in mobile robotics. Extending visual Simultaneous Localization and Mapping (SLAM) with other modalities such as an inertial measurement unit (IMU) can boost robustness and accuracy. However, for a tight sensor fusion, accurate time synchronization of the sensors is often crucial. Changing exposure times, internal sensor filtering, multiple clock sources and unpredictable delays from operation system scheduling and data transfer can make sensor synchronization challenging. In this paper, we present VersaVIS, an Open Versatile Multi-Camera Visual-Inertial Sensor Suite aimed to be an efficient research platform for easy deployment, integration and extension for many mobile robotic applications. VersaVIS provides a complete, open-source hardware, firmware and software bundle to perform time synchronization of multiple cameras with an IMU featuring exposure compensation, host clock translation and independent and stereo camera triggering. The sensor suite supports a wide range of cameras and IMUs to match the requirements of the application. The synchronization accuracy of the framework is evaluated on multiple experiments achieving timing accuracy of less than 1   ms . Furthermore, the applicability and versatility of the sensor suite is demonstrated in multiple applications including visual-inertial SLAM, multi-camera applications, multi-modal mapping, reconstruction and object based mapping.

8.
Plant Methods ; 15: 13, 2019.
Article in English | MEDLINE | ID: mdl-30774703

ABSTRACT

BACKGROUND: Recent advances in high throughput phenotyping have made it possible to collect large datasets following plant growth and development over time, and those in machine learning have made inferring phenotypic plant traits from such datasets possible. However, there remains a dirth of datasets following plant growth under stress conditions along with methods for inferring them using only remotely sensed data, especially under a combination of multiple stress factors such as drought, weeds and nutrient deficiency. Such stress factors and their combinations are commonly encountered during crop production and being able to accurately detect and treat such stress conditions in an automated and timely manner can provide a major boost to farm yields with minimal resource input. RESULTS: We present a generic framework for remote plant stress phenotyping that consists of a dataset with spatio-temporal-spectral data following sugarbeet crop growth under optimal, drought, low and surplus nitrogen fertilization, and weed stress conditions, along with a machine learning based methodology for systematically inferring these stress conditions from the remotely measured data. The dataset contains biweekly color images, infra-red stereo image pairs and hyperspectral camera images along with applied treatment parameters and environmental factors like temperature and humidity, collected over two months. We present a plant agnostic methodology for deriving plant trait indicators such as canopy cover, height, hyperspectral reflectance and vegetation indices along with a spectral 3D reconstruction of the plants from the raw data to serve as a benchmark. Additionally, we provide fresh and dry weight measurements for both the above (canopy) and below (beet) ground biomass at the end of the growing period to serve as indicators of expected yield. We further describe a data driven, machine learning based method to infer water, Nitrogen and weed stress using the derived plant trait indicators. We use the plant trait indicators to evaluate 8 different classification approaches from which the best classifier achieved a mean cross validation accuracy of ≈ 93, 76 and 83% for drought, nitrogen and weed stress severity classification respectively. We also show that our multi-modal approach significantly improves classifier performance over using any single modality. CONCLUSION: The presented framework and dataset can serve as a valuable reference for creating and comparing processing pipelines which extract plant trait indicators and infer prevalent stress factors from remote sensing data under a variety of environments and cropping conditions. These techniques can then be deployed on farm machinery or robots enabling automated, precise and timely corrective interventions for maximising yield.

9.
Front Neurosci ; 7: 275, 2013.
Article in English | MEDLINE | ID: mdl-24478619

ABSTRACT

Mobile robots need to know the terrain in which they are moving for path planning and obstacle avoidance. This paper proposes the combination of a bio-inspired, redundancy-suppressing dynamic vision sensor (DVS) with a pulsed line laser to allow fast terrain reconstruction. A stable laser stripe extraction is achieved by exploiting the sensor's ability to capture the temporal dynamics in a scene. An adaptive temporal filter for the sensor output allows a reliable reconstruction of 3D terrain surfaces. Laser stripe extractions up to pulsing frequencies of 500 Hz were achieved using a line laser of 3 mW at a distance of 45 cm using an event-based algorithm that exploits the sparseness of the sensor output. As a proof of concept, unstructured rapid prototype terrain samples have been successfully reconstructed with an accuracy of 2 mm.

10.
Article in English | MEDLINE | ID: mdl-23367472

ABSTRACT

The exploitation of EEG signatures of cognitive processes can provide valuable information to improve interaction with brain actuated devices. In this work we study these correlates in a realistic situation simulated in a virtual reality environment. We focus on cortical potentials linked to the anticipation of future events (i.e. the contingent negative variation, CNV) and error-related potentials elicited by both visual and tactile feedback. Experiments with 6 subjects show brain activity consistent with previous studies using simpler stimuli, both at the level of ERPs and single trial classification. Moreover, we observe comparable signals irrespective of whether the subject was required to perform motor actions. Altogether, these results support the possibility of using these signals for practical brain machine interaction.


Subject(s)
Electroencephalography/methods , Feedback, Sensory , Man-Machine Systems , Touch , Vision, Ocular , Adult , Algorithms , Anticipation, Psychological , Brain/physiology , Brain Mapping/methods , Computer Graphics , Computer Simulation , Evoked Potentials , Humans , Male , Movement , Reproducibility of Results , Signal Processing, Computer-Assisted , Young Adult
11.
Neural Comput ; 23(2): 558-91, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21105824

ABSTRACT

In this letter, we propose a learning system, active decision fusion learning (ADFL), for active fusion of decisions. Each decision maker, referred to as a local decision maker, provides its suggestion in the form of a probability distribution over all possible decisions. The goal of the system is to learn the active sequential selection of the local decision makers in order to consult with and thus learn the final decision based on the consultations. These two learning tasks are formulated as learning a single sequential decision-making problem in the form of a Markov decision process (MDP), and a continuous reinforcement learning method is employed to solve it. The states of this MDP are decisions of the attended local decision makers, and the actions are either attending to a local decision maker or declaring final decisions. The learning system is punished for each consultation and wrong final decision and rewarded for correct final decisions. This results in minimizing the consultation and decision-making costs through learning a sequential consultation policy where the most informative local decision makers are consulted and the least informative, misleading, and redundant ones are left unattended. An important property of this policy is that it acts locally. This means that the system handles any nonuniformity in the local decision maker's expertise over the state space. This property has been exploited in the design of local experts. ADFL is tested on a set of classification tasks, where it outperforms two well-known classification methods, Adaboost and bagging, as well as three benchmark fusion algorithms: OWA, Borda count, and majority voting. In addition, the effect of local experts design strategy on the performance of ADFL is studied, and some guidelines for the design of local experts are provided. Moreover, evaluating ADFL in some special cases proves that it is able to derive the maximum benefit from the informative local decision makers and to minimize attending to redundant ones.


Subject(s)
Decision Support Techniques , Neural Networks, Computer , Humans , Learning
SELECTION OF CITATIONS
SEARCH DETAIL
...